
Preface

The road leading to this dissertation has at times been dark and gloomy. As
such, I am fortunate for all the extraordinary people who have made this
work not only possible but also often enjoyable. First, I cannot overstate
the role my supervisor Professor N. Asokan has had on this undertaking; I
do not think it would have embarked on this journey without his guidance
and resolve. I have also been fortunate to collaborate with my PhD advisor
Dr. Jan-Erik Ekberg and his research team at Huawei Technologies. The
trust and advice afforded by Dr. Ekberg have been invaluable along this
path. My research has been funded by the Intel Collaborative Research
Institute for Collaborative Autonomous Resilient Systems; I am thankful
for the glimpse outside academia this collaboration has afforded. I thank
Professors William Enck and Aurélien Francillon for the pre-examination
and evaluation of this work. I also thank Professor Juha Röning for
agreeing to be my opponent in public defense of this dissertation.

I wish to thank my co-authors—Elena Reshetova, Andrew Paverd, Shohreh
Hosseinzadeh, Ville Leppänen, Thomas Nyman, Kui Wang, Carlos Chinea,
Zaheer Gauhar, and Lachlan Gunn—and other colleagues I have had the
pleasure of working with. In particular, I wish to thank Thomas Nyman
for the countless interesting discussions. I also owe a special thanks to
Dr. Reshetova, who already as my MSc thesis advisor was instrumental in
guiding me towards my current path. I would be remiss if I did not also
thank our coordinator Dr. Niina Idänheimo who has elevated our group
beyond a mere workplace. Finally, I would like to thank my family and
friends whose continued support has helped me through yet another step
in life.

Espoo, December 27, 2019,

Hans Liljestrand

1

Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

Other Publications 9

List of Figures 11

List of Abbreviations 13

1. Introduction 15
1.1 Motivation . 15
1.2 Objectives . 18
1.3 Outline and contributions . 19

2. Background 21
2.1 Compilers . 22
2.2 Memory errors, attacks, and defenses 24

2.2.1 From stack smashing to ROP 24
2.2.2 Control-flow integrity 27

2.3 Memory safety . 28
2.3.1 Spatial and temporal memory safety 29
2.3.2 Temporal memory safety 30
2.3.3 Memory safety in C / C++ 30

2.4 Hardware-assisted memory safety 31

3. Linux kernel memory safety 33
3.1 Background: Intel MPX and reference counters 34

3.1.1 Reference counters 34
3.1.2 Intel MPX . 36

3

Contents

3.2 Results: refcount_t and MPX in the Linux kernel 38
3.2.1 Preventing reference counter overflows in Linux 38
3.2.2 Using Intel MPX in the Linux kernel 39
3.2.3 Discussion: tricky bugs and environments 39

4. Intel SGX side-channels 43
4.1 Background: side-channels and Software Guard Exten-

sions (SGX) . 44
4.2 Results: preventing SGX branch shadowing 47
4.3 Discussion: side-channel challenges 47

5. ARM Pointer authentication 51
5.1 Background: ARMv8.3-A pointer authentication 51
5.2 Results: pointer authentication and stack safety 53
5.3 Discussion: beyond pointer authentication 55

6. Discussion and Conclusion 59
6.1 Preventing memory errors in unsafe languages 59
6.2 Memory safe languages . 60
6.3 Understanding memory errors and exploitability 62
6.4 Conclusion . 63

Errata 81

Publications 83

4

List of Publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I Elena Reshetova, Hans Liljestrand, Andrew Paverd, N. Asokan. To-
wards Linux Kernel Memory Safety. Software: Practice and Experi-
ence, December 2018.

II Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, Andrew
Paverd. Mitigating Branch-Shadowing Attacks on Intel SGX using
Control Flow Randomization. In Proceedings of the 3rd Workshop
on System Software for Trusted Execution, SysTEX ’18, Toronto, ON,
Canada, pages 22–47, October 2018.

III Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea, Jan-
Erik Ekberg, N. Asokan. PAC it up: Towards Pointer Integrity using
ARM Pointer Authentication. In Proceedings of the 28th USENIX
Security Symposium, Santa Clara, CA, USA, pages 177–195, August
2019.

IV Hans Liljestrand, Zaheer Gauhar, Thomas Nuyman, Jan-Erik Ek-
berg, N. Asokan. Protecting the stack with PACed canaries. In
Proceedings of the 4th Workshop on System Software for Trusted
Execution, SysTEX ’19, Huntsville, ON, Canada, 6 pages, October
2019.

V Hans Liljestrand, Thomas Nyman, Lachlan Gunn, Jan-Erik Ekberg,
N. Asokan. PACStack: an Authenticated Call Stack. Submitted, 20
pages, August 2019.

5

Author’s Contribution

Publication I: “Towards Linux Kernel Memory Safety”

I designed and implemented a GCC-plugin that enabled the use of Intel
MPX within the Linux kernel. I also contributed to the design of a hardened
reference counter for the Linux kernel. Together with my co-authors, I
implemented over 200 patches that were subsequently accepted in the
mainline Linux kernel. I wrote the paper together with my co-authors.

Publication II: “Mitigating Branch-Shadowing Attacks on Intel SGX
using Control Flow Randomization”

I co-designed a control-flow randomization scheme that mitigates branch-
shadowing side-channels on Intel SGX enclaves. I implemented the LLVM-
based compile-time instrumentation together with my co-authors. I wrote
the paper together with my co-authors.

Publication III: “PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication”

I co-designed a run-time type-safety scheme based on ARMv8.3-A Pointer
Authentication (PA). Together with my co-authors, I investigated and
proposed a mitigation to a PA-specific pointer reuse attack. Thomas Nyman
and I led the writing of the paper, to which all authors contributed.

Publication IV: “Protecting the stack with PACed canaries”

I co-designed a stack-canary scheme built upon ARMv8.3-A Pointer Authen-

7

Author’s Contribution

tication and led the implementation of an LLVM-based research prototype.
I led the writing of the paper, to which all authors contributed.

Publication V: “PACStack: an Authenticated Call Stack”

I co-designed a ARMv8.3-A Pointer Authentication scheme that provides
precise return address protection. Thomas Nyman envisioned the initial
design, whereas I proposed PA-specific optimizations. I implemented the
LLVM-based prototype of the design. Thomas Nyman and I led the writing
of the paper, to which all authors contributed.

8

Other Publications

The following publications are not included in this dissertation.

VI Mika Juuti, Christian Vaas, Ivo Sluganovic, Hans Liljestrand, N.
Asokan, Ivan Martinovic. STASH: Securing transparent authentica-
tion schemes using prover-side proximity verification. Proceedings of
the IEEE International Conference on Sensing, Communication and
Networking, 2017.

VII Hans Liljestrand, Thomas Nyman, Jan-Erik Ekberg, N. Asokan. Late
Breaking Results: Authenticated Call Stack. Proceedings of the 56th
Annual Design Automation Conference, 2019.

VIII Long Cheng, Hans Liljestrand, Md Salman Ahmed, Thomas Nyman,
Danfeng (Daphne) Yao, Trent Jaeger, N. Asokan. Exploitation tech-
niques and defenses for data-oriented attacks. Proceedings of the
IEEE Cybersecurity Development, 2019.

9

List of Figures

2.1 Program abstraction layers. 22
2.2 Three-part compiler construction. 23
2.3 Temporal and spatial memory errors. 29

3.1 Reference counters and concurrency. 36
3.2 Intel MPX metadata addressing scheme. 37

4.1 Intel SGX overview. 44
4.2 Branch-shadowing side-channel 46

5.1 Pointer authentication codes in pointers on ARM. 52
5.2 Validating returned addresses with a MAC chain. 54

11

List of Abbreviations

ABI application binary interface

API application programming interface

ASLR address space layout randomization

BD bound directory

BPU branch prediction unit

BT bound table

BTB branch target buffer

BTI branch target indicator

CCFI cryptographic CFI

CET Control-flow Enforcement Technology

CFG control-flow graph

CFI control-flow integrity

CISC complex instruction set computer

CPU central processing unit

DEP data-execution prevention

DOP data-oriented programming

DOS denial-of-Service

EC equivalence class

FP frame pointer

FSM finite state machine

13

List of Abbreviations

IBRS indirect branch restricted speculation

IoT Internet of Things

IR intermediate representation

JIT-ROP just-in-time return-oriented programming

JOP jump-oriented programming

KASLR kernel address space layout randomization

LBR last branch record

LR link register

MAC message authentication code

MMU memory management unit

MPX Memory Protection Extensions

MTE Memory Tagging Extension

OS operating system

PA Pointer Authentication

PAC pointer authentication code

PHT pattern history table

PKU Memory Protection Keys for Userspace

PT Processor Trace

RISC reduced instruction set computer

ROP return-oriented programming

SGX Software Guard Extensions

SP stack pointer

SROP sigreturn-oriented programming

SSA single static assignment

TEE trusted execution environment

TOCTOU time-of-check-time-of-use

VA virtual address

VM virtual machine

14

1. Introduction

1.1 Motivation

Computer systems are everywhere today. This has been a growing trend
for decades, from personal computing and mobile phones to the Internet
of Things (IoT). The transition has not been easy from a security per-
spective. Personal computing moved computers from physically secured
server rooms into open environments. With the emergence of the Internet,
computers were further opened to network attacks. In time, operating
systems were forced to adapt and improve their built-in security. A similar
progression happened with web technologies, which, after some initial
security-woes, have become gradually more secure.

Computers have also become more integrated into our everyday lives.
Even devices without obvious privacy or security concerns (e.g., toys or
other gadgets) can be abused. The Mirai attacks in 2018 compromised IoT
devices to mount a massive denial-of-Service (DOS) attack that crippled
large parts of the Internet [7]. Security is no longer the concern of a few
security-critical systems. It spans everything from smart refrigerators and
gaming consoles to cyber-physical systems such as autonomous vehicles.

The widespread use of computers is not limited to the consumers; com-
puter systems need to be designed and implemented. Easy access to
software development tools and distribution channels has enabled devel-
opment outside large organizations. With the recent growth of maker
workshops and open hardware designs (e.g., RISC-V [12]), the same trend
increasingly applies to hardware development as well. These new systems
must be secured, but often the designers of these systems are not security
experts. Vulnerabilities that arise from application-specific requirements
and logic errors can, or must, be addressed by the developer. Memory
errors are a prominent cause of many security problems. They are often
unintuitive and difficult for non-experts.

15

Introduction

Memory errors Memory errors are faults that cause memory to be altered
in unintended ways [151]. The underlying issue can be in the architecture-
specific details of language implementations (e.g., how function calls are
implemented). Because they depend on low-level details, they are not
necessarily apparent from source code alone. As such, a higher level of
security expertise and awareness is required to mitigate these attacks.
The same applies to software side-channels, e.g., prime+probe attacks that
exploit the central processing unit (CPU) caches [167]. Not to mention the
recent transient execution attacks that leverage obscure micro-architectural
behavior [27].

An attacker can exploit memory errors to alter program behavior or ex-
pose sensitive data. The stack smashing attack from 1996 [108]—and the
Morris worm from 1988 [149]—exploits memory errors to inject code on the
stack and then alters the function return address so that the injected code
is executed on return. This attack type is prevented by widely-deployed
W⊕X policies such as the data-execution prevention (DEP) feature on Mi-
crosoft Windows [116]. Yet the 1997 return-to-libc attack showed that
expressive attacks are possible to construct without injecting new code into
program memory [130]. These attacks are mitigated by stack canaries [47],
address space layout randomization (ASLR) [142], and control-flow in-
tegrity (CFI) [2], which in turn can be defeated by newer attacks, and so
on.

The continuous arms race and increasingly obscure attacks require con-
stant evolution of security mechanisms [151]. Because security today
touches all areas of software development, it cannot depend on security
experts or ad hoc solutions. Instead, security must be supported from
the ground up, starting with the tools used to build software. Secure
programming languages—such as the systems programming language
Rust [114]—show promise in preventing memory errors. But new lan-
guages cannot replace the expertise and code that already exist in older
languages. To protect code today, we must accommodate programming
languages in current use.

Memory protection Much research has focused on providing memory
safety for memory-unsafe languages, such as C / C++. Such approaches can
be categorized into compile-time and binary-only instrumentation. Binary-
only approaches can be applied to compiled binaries and are convenient
to use, but cannot rely on language semantics available at compile-time.
Compile-time instrumentation can use language semantics such as vari-
able scoping and type information to implement more precise security
policies. Compile-time approaches can be further divided into three cat-
egories: 1) new memory-safe languages, 2) augmenting memory-unsafe
languages, and 3) source-compatible hardening of existing languages.

Although memory-safe languages cannot immediately replace existing
code, they are an important step towards memory safety. They are pow-

16

Introduction

erful because security properties, such as variable ownership and array
bounds, can be made first-class language constructs [114]. The same can
be achieved by augmenting memory-unsafe languages such as C with new
annotations and types that provide memory safety [60]. Although such
hardened C variants can be applied to existing codebases, they require
refactoring and code conversion, which can incur a considerable deploy-
ment cost. Finally, security mechanisms can be added to the compilation of
an existing language. These approaches rely on existing semantic informa-
tion and static analysis to implement security features without requiring
source code changes.

Hardware-assisted memory protection From an instrumentation stand-
point, hardening mechanisms can be purely software-based [113, 121],
or rely on special-purpose hardware. Software-based solutions are conve-
nient, but typically suffer from high performance overheads or security
trade-offs (e.g., CCFI with an overhead of 50% [113], or software shadow-
stacks that are vulnerable to memory disclosure [25]). Several hardware-
based approaches have been proposed in the research literature (e.g.,
CHERI [162], HardBound [54], and HardScope [123]), but these require
special-purpose hardware. Meanwhile, new security extensions are being
deployed in commodity hardware (e.g., Intel Memory Protection Exten-
sions (MPX) [125], Intel Control-flow Enforcement Technology (CET) [82],
ARM8.3-A Pointer Authentication (PA) [133], ARM8.5-A Memory Tagging
Extension (MTE) [9]). These features are as of yet not used to their fullest
extent, or in the case of special-purpose hardware, are costly to deploy.
Nonetheless, hardware-assisted memory safety provides fertile ground for
building efficient security mechanisms. Features in commodity hardware
are particularly interesting as they allow wide-scale deployment with no
additional hardware costs.

Kernel hardening The operating system (OS) kernel controls the whole
system and is an enticing attack target. By exploiting the kernel, an at-
tacker can gain full access to a system, e.g., by controlling process schedul-
ing and memory mapping. The security of the kernel is thus critical for
the whole system’s security. The Linux kernel is widely deployed on a
range of devices, including IoT and other embedded devices. In contrast
to desktop systems, it might not be possible to update embedded devices
after deployment. A reactive patching strategy is thus ineffective. Kernel
development must instead provide systematic approaches that eliminate
whole classes of errors. Meanwhile, many memory safety efforts focus
on userspace programs and cannot be directly transferred into the ker-
nel. Intel MPX, for instance, provides configuration registers for kernel
space but uses a metadata model that cannot be used within the Linux
kernel [125]. But the constrained low-level environment is not always a
hindrance. The homogeneous source code of the kernel can allow solutions

17

Introduction

that are not applicable to general code, e.g., by modifying definitions in
common headers and subsystems.

1.2 Objectives

The overarching objective of this work is to harden computer systems
against run-time attacks that exploit memory errors or side-channels.
But security hardening cannot be our only goal; solutions must also be
deployable, both in terms of development cost and performance. In practice,
our objective is thus to leverage existing hardware and provide source-
compatible security schemes with a low-barrier of adoption. However,
protecting a regular userspace application running on a compromised
kernel is futile. As a consequence, the security of the OS kernel must be
considered.

Compile-time instrumentation For a large class of programs, deployment
costs exclude developer-intensive approaches such as switching to new or
hardened languages. Compile-time instrumentation provides a solution
as it uses existing source-code semantics to instrument programs with
run-time checks. But instrumentation will change program behavior; and
can lead to compatibility issues (e.g., when a program relies on specific
undefined behavior in C / C++). In this dissertation, as a whole, I explore
the research question:

RQ1 How to improve memory safety using compile-time instru-
mentation?

Hardware-assistance Many security mechanisms incur a large perfor-
mance overhead and therefore necessitate trading off security to keep
overhead within acceptable bounds. Hardware support allows for both
better performance and security. But new hardware is expensive. One ob-
jective of this work is to explore the use of existing and upcoming hardware
security extensions in commodity hardware. In general, I aim to answer
the following research question:

RQ2 How can security features in commodity hardware be used
to harden memory safety?

Kernel hardening Due to its central role, the kernel must be protected to
prevent full system compromise. This work specifically targets systematic
approaches that eliminate classes of memory errors, not individual bugs.
Existing memory-safety research often focuses on userspace applications.

18

Introduction

Table 1.1. Publications and corresponding research questions.

Publication RQ1 RQ2 RQ3

Publication I (Chapter 3) ✓ ✓ ✓

Publication II (Chapter 4) ✓ ✗ ✗

Publication III (Chapter 5) ✓ ✓ ✗

Publication IV (Chapter 5) ✓ ✓ ✗

Publication V (Chapter 5) ✓ ✓ ✗

These solutions either cannot be realized in kernel space, or they require
additional changes to function properly. One objective is thus exploring the
adaptation of such technologies to protect the kernel. The self-contained
nature of the kernel can also lend itself to more hands-on approaches
that modify the kernel source itself. However, it is not straightforward
to develop and apply kernel-wide patches in a systematic way. Through
this work, I explore these problems, and in particular, aim to answer the
following research question:

RQ3 How can the OS kernel’s memory safety be hardened in a
systematic way?

1.3 Outline and contributions

This thesis is organized such that Chapter 2 offers a common background
upon which subsequent chapters build. The following three chapters
(Chapters 3–5) summarize the work in the five publications that comprise
this dissertation. The relation between the publications and the research
questions are summarized in Table 1.1. Two central themes emerge in
this dissertation: compile-time instrumentation and hardware-assisted
security.

Chapter 3 presents Publication I, which explores research question RQ1.
Specifically, we address two categories of memory errors in the Linux
kernel. First, we apply a kernel-wide protection scheme against reference
counter overflows. We also propose an automated source code checking
tool that encourages the secure implementation of new reference counters.
Patches for both reference counter protection and code checking were
subsequently accepted in the upstream Linux kernel [43]. Second, we
also touch RQ2 and RQ1, by adapting the Intel MPX instrumentation for
in-kernel protection.

Chapter 4 presents Publication II, in which we address a side-channel vul-

19

Introduction

nerability in Intel Software Guard Extensions (SGX). SGX is a userspace
trusted execution environment (TEE) that provides isolated execution and
encrypted memory within an enclave. The enclave provides both integrity
and confidentiality guarantees, even against the OS. Unfortunately, SGX
is vulnerable to side-channel attacks. Publication II addresses RQ1 by
employing compile-time instrumentation to prevent a branch-shadowing
side-channel on Intel SGX.

Chapter 5 presents Publications III–IV, which all explore the ARMv8.3-
A PA [8] hardware extension (RQ2). In Publication III we show how to
mitigate a PA-specific reuse attack and implement PA-based run-time
type enforcement for C. In Publication IV we show how PA can be used to
harden traditional stack canaries, whereas Publication IV shows that we
can eliminate the reuse attack completely for specific attacks. These works
answer RQ2 and RQ1 by showing that compile-time instrumentation us-
ing commodity hardware can provide security with negligible performance
overheads.

20

2. Background

Computer programs can be viewed through different layers of abstraction
(Figure 2.1). A programmer does not interact directly with the hardware.
Instead, they use a high-level programming language—e.g., C, C++, Java,
Python—to describe intended functionality in source code. A compiler
then translates the source code into machine code for a specific machine.1

Finally, the machine code is loaded into a physical machine that executes
it. The programmer focuses on the source code, but the machine code
directly affects run-time performance. Consequently, programmers often
employ various techniques—e.g., inline assembly and code patterns with
predictable compiler output—to produce machine code that is optimal
for specific hardware. But consequences are not limited to performance;
memory errors and side-channels are a direct consequence of how high-
level logic is realized on specific hardware.

As an example, consider a local variable in the C language. It must be
assigned a specific memory area whose size is determined based on the
variable size. At run-time, the machine code does not account for variable
sizes, and so might cause an overwrite memory error. Data is often stored
in contiguous memory areas to improve performance. An overwrite will
thus likely corrupt memory belonging to another variable, and thus be
exploitable. The CPU caches memory accesses to improve performance.
However, because the CPU caches are not tied to the process, they can
be used as a side-channel to infer memory accesses of other processes
executing on the same CPU [167].

The works included in this dissertation all use compile-time instrumen-
tation. It is useful to consider how a compiler works in order to appreciate
its relation to memory safety. Section 2.1 presents compiler internals.
Section 2.2 discusses memory error exploitation techniques and defenses.
Section 2.3 looks at memory safety. Finally, in chapter Section 2.4, I discuss
hardware-assisted memory-safety defenses.
1I will not consider interpreted languages or just-in-time compilation, although
most of the discussion in this dissertation also applies to them.

21

Background

int main() {
printf(“Hello World”);
return 0;

}

main:
stp x29, x30, [sp, -16]!
adrp x0, .LC0
add x0, x0, :lo12:.LC0
mov x29, sp
bl printf
mov w0, 0
ldp x29, x30, [sp], 16
ret

Abstract idea

Programming language

Machine code

Hardware

Figure 2.1. A computer program can be viewed from three different layers: the source
programming language, the machine code that is given to the CPU, and the
hardware that executes the computations described by the machine code.

2.1 Compilers

A compiler typically consists of three main components (Figure 2.2): 1) a
frontend that understands, parses and transforms some input language
into an intermediate representation (IR), 2) an optimizer that transforms
the IR to improve it without impacting the end results, and 3) a backend
that transforms the IR into some destination language, typically the ma-
chine code of a targeted processor architecture. These descriptions are
intentionally imprecise; for example, “improving” might mean reducing
size or execution time, or minimizing memory use. The distinction be-
tween these components is also loose; in practice, they can be more or less
integrated. Nonetheless, this is a useful view of the compilation process
and describes the general architecture of, for instance, the LLVM / Clang
compiler [106].

Frontend The compiler frontend recognizes a source languages and trans-
forms them into an IR used by the compiler. The frontend understands
the syntax and semantics of the source language. It can thus validate the
structure, and to some extent, the meaning of the program. The front-end
can also perform extensive analysis by leveraging source code semantics.
For instance, the Clang compiler provides various static analyzers that
can be used to detect memory errors at compile time [36]. Other languages,
such as Rust, perform static analysis during compilation in order to provide
strong run-time security properties [114].

After validating the input, the frontend converts it to a common IR used
by the compiler. In compilers such as LLVM, the IR is shared by multiple
frontends for different languages. Although the IR is typically language

22

Background

Machine code

Intermediate
Representation

Intermediate
Representation

Target-specific backend

Optimizer

Language-specific fronted

Source code

Figure 2.2. A compiler performs three main functions: 1) it recognizes an input language,
2) it optimizes the code, and 3) it outputs the result in come output format.

agnostic, different frontends will produce slightly different IR. The target
architecture might also impose limitations that affect the produced IR. The
C language, for instance, defines integer sizes that are dependent on the
target architecture. Consequently, a C language frontend outputs slightly
different IR on 32-bit and 64-bit architectures.

Optimizer The optimizer performs various analyses and uses the results
to improve the IR. Most optimizations are performance-related. An exam-
ple would be a loop optimization that moves a constant assignment out of
the loop so that it is only executed once. The IR is designed to facilitate
efficient optimizations and code generation. In LLVM, the IR is in single
static assignment (SSA) form, i.e., each variable is assigned only once. The
SSA simplifies reasoning about variable values and lifetimes.

The IR operates on an abstract machine model that has an unlimited
number of registers to hold variables. Nonetheless, it does incorporate
memory store and load operations, for instance, to load global variables.
Optimizations then try to minimize the need for memory operations to
improve performance. For instance, when a loop loads a variable from
memory, it would be beneficial to move the load outside the loop. But the
optimizer must not change the functionality of the program. Hence, it must
first prove that the loaded memory cannot change during the loop. This
might require points-to analysis that shows which pointers could point to
the same memory at run-time [6, 150].

Backend The compiler backend converts the hardware-agnostic IR into
machine-specific code. In the case of LLVM, this is another IR, called
simply the machine IR. The machine IR syntax is shared among different
architectures, which then use it to describe architecture-specific instruc-
tions. The conversion of SSA form IR must perform two critical functions:
1) instruction selection, which selects target-specific instructions that corre-
spond to some IR instruction, and 2) register selection, which assigns each
IR variable to a specific hardware register. Because the hardware registers

23

Background

are limited in number, the compiler must sometimes spill variables into
memory. Specifically, onto the function stack.

The stack size must be defined, for which the compiler must decide which
values it needs to hold. The calling convention will typically set some
constraints on the stack layout. Function parameters might be passed
through the stack, for instance. The stack frame also typically holds
control-data needed to implement function calls, namely: 1) the frame
pointer (FP) that indicates the address of the previous stack frame, and 2)
the return address, which indicates where execution should continue after
the current function.

It is at this final stage, after various transformations, where memory
errors materialize. Neither the IR nor machine IR know the semantics
of the original input language. As such, either the original code or the
various transformations after it could be based on incorrect assumptions.
When these are not explicitly checked, either via compile-time verification
or run-time checks, memory errors occur. Moreover, hardware limitations
mean that control-data such as the return address is stored interleaved
with other data on the stack. This allows seemingly small memory errors
to affect program operation drastically.

2.2 Memory errors, attacks, and defenses

It is useful to review the history of memory attacks and defenses in order to
appreciate the current state of run-time memory protection. In this section,
I will present the early progression of attacks, from code injection [149, 108]
to return-oriented programming (ROP) [141]. Along the way, I will present
the evolution of related defenses and their subsequent circumvention
techniques. I will finally present current research and directions in memory
protection.

2.2.1 From stack smashing to ROP

Code injection attacks Buffers allocated on the stack have a specific size
at run-time. A stack-based buffer overflow happens when a write to such
a buffer exceeds that size and corrupts other memory. An overflow could
happen because the size of input provided by an attacker A is not verified
to be within expected size limits. The traditional stack smashing attack
exploits such overflows to inject attacker-controlled machine code onto the
stack [149, 108]. To execute the code, A alters the program control flow by
exploiting the implementation of functions.

On complex instruction set computer (CISC) architectures such as x86,
a function call implicitly stores the return address on the stack before
transferring control into the function. Correspondingly, the return instruc-

24

Background

tion then implicitly loads the return address from the stack and transfers
control to the pointed-to address. On reduced instruction set computer
(RISC) architectures, e.g., ARM, the return address is stored in the link
register (LR) on function entry [10]. Nonetheless, it must then be stored
on the stack to facilitate nested function calls that overwrite LR. In both
cases, the return address is thus stored on the stack. A can thus not only
inject the machine code but also corrupt the return address such that it
points to the injected code.

W⊕X policies W⊕X policies enforce that memory is either writeable or
executable but not both at the same time. They effectively prevent code
injection attacks by making the stack non-executable. A non-executable
stack does not stop memory errors from corrupting memory. Instead, it
prevents A from executing the injected code. Today, W⊕ X policies are
widely supported by operating systems, including Microsoft DEP [116] and
Linux [129].

return-into-libc The 1997 return-into-libc attack demonstrated that in-
jected code is not necessarily needed [130]. In this attack, A replaces
the function return address with the address of a libc function. The vic-
tim will then incorrectly return to the injected address and execute the
attacker-chosen libc function. This technique allows A to effectively call
arbitrary functions. Moreover, because the stack grows towards lower
addresses, A can corrupt multiple stack-frames. A can thus inject several
return addresses such that the program executes multiple functions of the
attackers choosing.

Stack canaries Although the return-into-libc attack is sophisticated, it
still exploits a stack buffer overflow. As such, it can be prevented by
detecting overflows before the function return is executed. Stack canaries,
proposed initially in StackGuard [47], build upon this realization. A stack
canary is a value that is stored on the stack such that it will be corrupted
if an overwrite reaches the return address. The integrity of the canary can
then be verified before the function returns.

A can circumvent canary defenses by guessing the correct canary value,
or by corrupting non-protected data on the stack [1, 135]. Overflows that
exploit string functions can be prevented using terminator canaries that in-
clude string-terminating characters [46]. Early defenses prevented canary
copy and re-use attacks by masking the canary with the return address [61].
Several hardened canary schemes exist, including DynaGuard [131] and
DCR [76] that allow re-randomizing canary values at run-time; and poly-
morphic canaries [160] that allow efficient diversification of canaries in
forked processes.

In practice, canary schemes are very similar to the original StackGuard.
Both GCC and Clang provide stack protection using canaries [70, 35].
The instrumentation initializes a single process-wide canary at startup.

25

Background

The compilers offer different variants of the stack protector, but these
only control which functions are instrumented. For instance, a canary
in a function without buffers is unlikely to be useful, and so it can be
omitted. Ultimately, any canary scheme can be circumvented by avoiding
overwriting the canary or by leaking its value. This inherent weakness
makes the performance cost of hardened canary schemes questionable.

Code-reuse attacks W⊕X policies or canaries can not prevent all return-
into-libc attacks, or, more generally, code-reuse attacks. ROP is an advanced
code-reuse technique that can be used to realize expressive attacks [141].
In ROP, A changes multiple return addressees on the stack such that
they point into gadgets. In contrast to return-into-libc, a gadget is not
necessarily a complete function. Instead, it can be any section of code that
ends in a return. The return is used to chain gadgets together. A can use
ROP for arbitrary computation by finding and using different gadgets, e.g.,
memory load and store gadgets.

Subsequent research has demonstrated that ROP attacks are possible
on ARM architectures [97, 49]. Others have demonstrated that jump-
oriented programming (JOP) attacks can achieve similar expressibility
without return instructions [31, 18]. Instead, JOP attacks use sequences
of instructions with similar behavior. For instance, instead of a return, a
JOP gadget could end with an indirect branch instruction. Other attacks
exploit the behavior of abnormal control-flow transitions, such as signal
handlers. When entering a signal handler, the execution state is stored
in a signal frame on the program stack. On return from the handler, the
sigreturn system call restores the prior execution from the signal-frame
and resumes execution. Sigreturn-oriented programming (SROP) attacks
exploit this behavior by writing a bogus signal-frame on the stack and
performing a sigreturn system call [19].

Probabilistic defenses Code-reuse attacks depend on finding gadgets. A
typical program contains a large amount of code, and so gadgets are
typically available. A can thus analyze a target binary, identify the gadgets,
and store their memory addresses. Address space layout randomization
(ASLR) randomizes the location of different memory regions to remove
predictable gadget addresses [128, 163]. To perform a code-reuse attack, A

must either leak addresses or attempt to guess them, which likely causes
the program to misbehave or crash. ASLR can also be applied to protect
the OS kernel [92]. Both Windows [87] and Linux [42] now make use of
ASLR to protect both the kernel and userspace applications.

Side-channel attacks can break ASLR in both userspace [73, 62] and
in the kernel [80]. The kernel is at a disadvantage because it is long-
lived and interacts with multiple different programs. Any program, log,
or driver could be used to leak kernel addresses for an attack launched
from another process. It is likely also non-trivial to transfer ASLR hard-

26

Background

ening schemes, such as re-randomization [112, 161], to a kernel setting.
Moreover, advanced attack techniques such as just-in-time return-oriented
programming (JIT-ROP) can discover new gadgets while executing a ROP
attack [145]. JIT-ROP works around fine-grained ASLR schemes, but
would likely apply equally to re-randomization schemes.

2.2.2 Control-flow integrity

Stateless CFI Defenses such as W⊕ X policies efficiently prevent code-
injections attacks. Defenses like ASLR and canaries make code-reuse
attacks harder, but do not prevent them entirely. CFI directly addresses
code-reuse attacks by enforcing a policy based on a pre-computed control-
flow graph (CFG) for the protected program [2, 3]. Instrumentation then
checks that the forward-edges, e.g., indirect function calls, target a des-
tination containing an expected identifier. The identifier is based on an
equivalence class (EC) derived from the CFG, such as that functions that
share call-sites belong to the same EC. This can result in an overly permis-
sive policy [3]. Another approach is to route all indirect function calls via
jump-tables [153]. This allows the implementation of more restrictive poli-
cies. Nonetheless, carefully constructed code-reuse attacks can circumvent
stateless CFI solutions [137, 51, 72, 40].

Fully-precise CFI Fully-precise CFI is an idealized stateless CFI policy.
It only allows control-flows that happen in some benign execution of a
program. Unfortunately, if the benign execution allows multiple functions
at a call-site, then even a fully-precise CFI must allow those targets. A can
thus still alter control-flow among those possible targets. Subsequently,
even fully-precise CFI has been shown vulnerable to control-flow bending
attacks [29].

Shadow call stacks Backward-edges in the CFG—for instance, a function
return—can be enforced using a shadow call stack [25]. The shadow call
stack is used to hold a secure copy of return addresses, and thus allows
precise verification of returns. The shadow call stack must be protected
for it to guarantee protection. It can be protected using software fault
isolation [2]. Software-based shadow call stacks can be faster by placing
them in the same address space and addressing them via a dedicated
register [48, 25]. However, such approaches can leave the shadow call
stack open to attack.

Context-sensitive CFI Shadow stacks are stateful, i.e., they do not follow
a fixed statically determined CFG. However, they only protect function
returns. Recent work has proposed solutions that combine static analysis
and run-time tracking to implement stateful CFI policies. Such approaches
restrict control-flows with respect to the whole execution path of the pro-
gram [56, 111, 68]. The program execution flow is tracked using the

27

Background

Intel Processor Trace (PT) [83, Vol.3C, Chap.35] and monitored from a
separate monitoring process. This approach has been demonstrated to
allow enforcement of unique control-flow targets [78]. Unfortunately, this
does not come for free; the performance overhead of instrumentation is
less than 5%, but the monitoring process incurs an additional overhead of
about 10% [78].

Protecting code-pointers Control-flow attacks generally depend on manip-
ulating code pointers (including the return address). A natural alternative
to CFI is thus to focus on the protection of code pointers. Code-pointer
integrity takes this approach [101]. It uses static analysis to identify and
protect pointers by placing them in protected memory, called the safe
stack [102]. An alternative to isolating pointers, is to cryptographically pro-
tect them. Cryptographic CFI (CCFI) uses message authentication codes
(MACs) to verify the integrity of pointers before they are used [113]. The
MAC is derived from the pointer’s address and its type. Using a type-based
MAC permits efficient instrumentation without the need for extensive
static analysis. Approaches that protect code pointers provide exact CFI
verification.

Clang CFI CFI implementations have been demonstrated on both GCC
and LLVM compilers [153]. The LLVM / Clang compiler provides a stateless
CFI mechanism [37]. In contrast to traditional CFI approaches, Clang
uses type-based checking at call sites. In effect, it checks that indirect
function calls are performed using pointers of the correct dynamic-type. In
addition, Clang supports software-based shadow call stacks on 64-bit ARM
architectures [38].

Data-only attacks Performance and compatibility questions aside, current
defenses proposed in the literature offer comprehensive protection against
code-reuse attacks. However, non-control data attacks do not alter any
control-data, and therefore, do not violate CFI policies. Such attacks
have been demonstrated to be possible on real-world applications [33].
Moreover, recent data-oriented programming (DOP) attacks show that
non-control attacks can be used to perform arbitrary computations [79].
DOP is similar to ROP, but it does not directly alter control-flows to execute
gadgets. Instead, A alters data that affects control-flow decisions—e.g.,
loop iterations—to chain and select gadgets.

2.3 Memory safety

The attacks described in Section 2.2 are a result of memory errors and
would all be prevented by guaranteed memory safety. Despite such widespread
concern, the definition of memory errors remains elusive. There are efforts
to formalize the notion of memory safety. This is valuable because it would

28

Background

object

malloc(sizeof(int)*10)

component A

free(obj)

obj[11] = 0

obj[0] = 0

obj[0] = 0

reserve memory

Figure 2.3. Memory errors can be either temporal (e.g., an out-of-bounds write ❶) or
spatial (e.g., use-after-free error ❷).

allow the memory safety of a specific program to be verified. Unfortunately,
the memory safety of a C program has been shown to be undecidable
in the general case [136]. Other models have shown undecidability un-
der multi-threading [169]. Nonetheless, recent work has moved towards
more practical definitions that could possibly be applied to subsets of C /
C++ [14].

In practice, memory safety is often defined as the absence of memory
errors. A memory error can be loosely defined as an error that causes
unintended changes to memory. In the literature, the memory-error def-
inition often depends on the research goals [77]. A common definition
of memory safety is the absence of specific memory errors. For instance,
Younan et al. [168] lists the following memory errors: 1) stack-based buffer
overflows, 2) heap-based buffer overflows, 3) dangling pointer references,
4) format string vulnerabilities, and 5) integer errors. Even without an
exact definition, it is intuitively clear that memory safety would prevent a
large class of attacks.

2.3.1 Spatial and temporal memory safety

Szekeres, Payer, and Wei [151] categorize errors into spatial and temporal
errors. When a memory read or write accesses memory out of bounds, a
spatial memory error occurs. For instance, if an array is accessed with
an index beyond its allocated size. A temporal memory error occurs when
data is accessed after its allocated memory has been freed. For instance,
use-after-free errors that occur when a variable is used after its allocated
memory has been freed for other use. Although this separation does
not provide a formal model, it highlights differences in both attacks and
defenses. Figure 2.3 illustrates the difference between temporal and spatial
memory errors.

29

Background

Spatial memory safety Spatial memory safety is conceptually clear: a
memory read or write should not touch unintended memory. In statically-
typed and type-checked languages, unintended memory is often unambigu-
ously specified by the type. The type then allows easy compile-time verifi-
cation and run-time checking of memory accesses. C / C++ are statically-
typed but allow casting to and from raw pointers. Raw pointers do not carry
type (or size) information, and so do not support run-time type checking. A
spatial memory error can corrupt the memory of unrelated data. As seen
in Section 2.2, such errors can be used to implement expressive attacks.

2.3.2 Temporal memory safety

Temporal memory safety is, again, conceptually simple: a variable should
not be used after its memory is deallocated. Some languages employ
techniques such as garbage collection to deallocate memory automatically.
Rust uses the concept of variable ownership and automatically deallocates
memory when an owned variable goes out of scope [114]. In the context of C
/ C++, memory can be manually allocated and deallocated. A program must
exercise care to deallocate an object only when it is no longer used. The use
of shared objects can be tracked using reference counters in order to ensure
safe deallocation [39]. When an object is prematurely deallocated and used
afterward, a use-after-free error occurs. Because the memory might already
have been assigned to other data, such errors are exploitable [168].

2.3.3 Memory safety in C / C++

There are many proposals for reaching memory safety in the C language.
These can be roughly split into source-compatible approaches that do not
require source code changes, and those that do. The latter consists of
approaches such as Cyclone [86] and CCured [122], with CCured having
a reported overhead of 25–214% in SPECINT 95 [122]. Checked-C takes
the middle-ground by providing new checked pointers that can be used to
convert C codebases gradually [60]. Nonetheless, even partial conversion
incurs relatively high-overhead, with a reported average of 8.6%.

Source-compatible approaches use existing source code semantics and
static analysis to implement memory safety checks. One approach for
spatial memory safety is to protect allocation bounds, e.g., Purity [75]
and AddressSanitizer [139]. These approaches use a shadow memory to
define memory red zones that can be used to detect spatial and temporal
memory errors. But they still incur a high overhead: AddressSanitizer has
a reported slowdown of 73% [139]. AddressSanitizer is currently widely
used in testing [11] and supported in the mainline Clang compiler [34].
However, allocation-based checking cannot detect inter-object overflows
and has been shown vulnerable to attacks [69].

30

Background

Another approach is to tie bounds to the pointer. Pointer-based bounds
have the advantage that they can be narrowed. Narrowing can be used
to limit a pointer to sub-structure within an object, instead of the allo-
cation that encompasses the whole object. Pointer-based bounds can be
realized with so-called fat pointers, i.e., a modifier pointer representation
that includes its bounds [89]. Fat pointers are convenient, but cause com-
patibility errors due to the changed pointer representation. An alternative
is to use disjoint metadata to track pointer bounds [127, 164, 54]. Baggy
bounds checking is one such approach and incurs an overhead of 72% on
SEPECINT 2000 [5]. SoftBound uses a similar approach but supports
write-only checking to achieve an average overhead of only 15% [121].

2.4 Hardware-assisted memory safety

Due to the high overhead of most run-time protection schemes, there is a
vested interest in providing hardware support. This includes hardware-
assisted CFI (e.g., HAFIX [50] and CFI CaRE [124]) and run-time scope
enforcement [50]. CHERI is a MIPS-based architecture that provides
memory safety by using capability-based memory addressing [162]. CHERI
capabilities have been shown to support Unix-like kernels and full software
stacks [52]. Such research is valuable, but faces deployment challenges
due to the need for hardware changes. However, hardware manufacturers
have recently started rolling out new memory-safety primitives in their
processors.

Intel Intel Memory Protection Extensions (MPX) is a hardware-assisted
spatial memory safety feature introduced in the Skylake CPUs [125]. It
supports pointer-based bounds checking similar to SoftBound [121] by
providing new instructions for accessing bound metadata and checking
bounds. Intel MPX is further explored in Publication I (Chapter 3). Intel
Memory Protection Keys for Userspace (PKU) is an extension that can
enforce that a protected memory region is accessed only when the process
has enabled a specific key. In practice, the process itself tags memory
regions for use with a specific key, and then loads that key into a config-
uration register. ERIM uses PKU to implement in-process isolation for
userspace programs [155]. An upcoming feature in Intel processors is
Control-flow Enforcement Technology (CET) [82]. It includes two compo-
nents, a hardware-assisted shadow stack—similar to the software shadow
call stacks discussed in Section 2.2.2—and indirect branch tracking. Indi-
rect branch tracking enforces that the execution of a call or jump instruc-
tion is always followed by the execution of a special instruction that marks
a valid target.

31

Background

ARM Pointer Authentication (PA) is a new feature introduced in the
ARMv8.3-A architecture [8]. It provides cryptographic primitives to sign
and verify pointers. It is used in Publications III–V and is further discussed
in Chapter 5. New features in the later ARMv8.5-A architecture include
branch target indicator (BTI) and Memory Tagging Extension (MTE) [8].
BTI is similar to the indirect branch tracking in Intel CET, although it
allows separation of indirect function calls and indirect branches. MTE is
somewhat similar to Intel PKU, but ties access permissions to pointers,
not the process. A hardware-assisted variant of the AddressSanitizer has
been demonstrated using MTE [140].

32

3. Linux kernel memory safety

The OS kernel is a security-critical piece of software that controls userspace
applications. The Linux kernel is a unikernel, i.e., a monolithic kernel
that controls everything from process scheduling to storage devices and
networking. From an attacker’s perspective, it is a lucrative target. Unfor-
tunately, the Linux kernel is also written in C, which readily lends itself
to memory errors (Section 2.2). Protecting the kernel is thus important.
It is tempting to consider the application of userspace memory-protection
schemes to the Linux kernel. But this poses three challenges:

C1 The kernel uses programming patterns that are incompatible with
many established userspace defenses.

C2 The adversary model is different, i.e., the attacker A operates outside
the kernel.

C3 Many security mechanisms depend on kernel facilities or use it to
provide integrity and confidentiality guarantees.

C1 Incompatibilities depend on the security policy and its implemen-
tation. For instance, pointer-based memory safety could benefit from
narrowing (Section 2.3.3). But the kernel implements inheritance using
a model that is incompatible with narrowing. A subclass in the kernel
is defined by placing the base class as a substructure at the end of the
inheriting structure. If a pointer to the base class were narrowed, it could
no longer access the inheriting class. Conflicts between the security policy
and kernel programming patterns can be solved either by weakening the
security policy or by modifying existing coding patterns.

C2 In users-space adversary models for memory safety, A typically at-
tacks a process from within it. A aims to alter the behavior of the same
process they interact with (Section 2.2). The kernel has a fundamentally
different adversary model. It is attacked from outside and cannot be triv-
ially reset. In userspace, it is relatively cheap to reset a misbehaving
process without affecting the system as a whole. This allows defenses that

33

Linux kernel memory safety

kill the process outright. This is not the case for the kernel; resetting the
kernel affects all running applications and could in itself be considered
a DOS attack. In the kernel adversary model, A can typically launch
arbitrary userspace programs, which then interact with the kernel, e.g.,
through system calls. The kernel can terminate an offending process, but
this neither resets kernel defenses nor prohibits A from retrying with a
new process. This is particularly problematic for security mechanisms that
rely on probabilistic defenses, e.g., kernel address space layout randomiza-
tion (KASLR) [42].

C3 Userspace defenses often rely on services by a higher privilege level,
e.g., the kernel. In the case of Intel MPX, the mechanism relies on the
kernel to dynamically manage memory mappings in order to improve
performance. But the dependency could also affect security, for instance, if
the kernel is used to protect sensitive data. While the kernel could rely on
the hypervisor, this might cause unreasonable performance overhead and
complicate the implementation of such defenses.

Practical kernel protection must consider both the specific run-time envi-
ronment and the different adversary model. But the monolithic code base
of the Linux kernel also has some advantages. It follows strict guidelines
and coding practices, which lends itself to systematic protections. The
kernel also uses its own Makefile-based build system kbuild [28], which
allows clean integration of security features. Linux has also introduced
kbuild support for GCC-plugins [44], and more recently added support for
building the kernel with LLVM / Clang [105]. In Publication I, we lever-
age these aspects to address two classes of bugs within the Linux kernel:
temporal memory errors caused by reference counter overflows, and spatial
memory errors.

3.1 Background: Intel MPX and reference counters

3.1.1 Reference counters

As mentioned in Section 2.3.2, reference counters are a technique for the
safe deallocation of objects [39]. A reference counter is conceptually simple:
it is an integer that tracks the number of references to an object [39].
When the count reaches zero, this implies that the referenced object is
no longer used and that its memory can be freed for other uses. An
ideal reference counter provides only an initialization instruction, and
conditional increment and decrement instructions. The exact value of the
counter is not needed, and it is sufficient for the increment and decrement
to return success on non-zero values.

34

Linux kernel memory safety

Reference counter overflows Integer overflow is a memory error [168]
that results in undefined behavior [85, 55]. On most contemporary proces-
sor architectures, an overflow will follow two’s complement semantics, i.e.,
an integer with the value INT_MAX will be set to INT_MIN when incremented.
Integers in Linux kernel always follow this behavior due to compiler con-
figuration.1 A reference counter can thus overflow and incorrectly reach
zero through repeated incrementing.

The number of references is typically bound by resource limitations.
Hence, a reference counter remains small enough to avoid integer overflows.
However, a program error could allow the counter to be incremented
without allocating resources. This could allow A to increment the counter
indefinitely, thereby causing the counter to overflow. This will trigger object
deallocation and subsequently cause a use-after-free error (Section 2.3.2).
In the context of the Linux kernel, reference counter overflows have been
shown to be exploitable.2

Concurrency and reference counters Reference counter semantics must
remain sound when accessed concurrently. The counter must be atomically
and conditionally modified on object acquisition and release. This prevents
time-of-check-time-of-use (TOCTOU) type errors that could result in use-
after-free errors (Figure 3.1). Modern CPUs support out-of-order execution
that allows the CPU to reorder instructions on a micro-architectural level
as long as the architectural result remains the same. For example, the
CPU might reorder load instructions to improve the locality of memory
loads. Memory barriers, i.e., instructions that guarantee partial or full
ordering of memory reads and writes, can be used to prevent this.

Reference counters in the Linux kernel To avoid concurrency issues, the
Linux kernel versions prior to v4.14 implemented reference counters using
the atomic_t type. It provides an atomic application programming inter-
face (API) for an integer and guarantees partial memory ordering [115].
Memory ordering is guaranteed either using architecture-specific memory
barriers, or a generic implementation based on spin-locks. The kernel
also provides the kref type, which is designed for reference counting and
implemented with atomic_t [99, 115]. Unfortunately, kref is sparsely used,
leading to a multitude of hand-crafted reference counter implementations
based on atomic_t.

Reference counters in the Linux kernel often serve multiple purposes.
For instance, the sk_wmem_alloc reference counter also tracks the message
transfer queue for the network layer. Hence, it needs to read the exact
counter value and perform arbitrary additions or subtractions. To further

1This behavior is guaranteed irrespective to CPU architecture by using the -fwrapv

and -fno-strict-overflow compiler flags.
2Reference counter errors were exploited, for instance, in CVE-2014-2851, CVE-
2016-4558, CVE-2016-0728, CVE-2017-7487 and CVE-2017-8925.

35

Linux kernel memory safety

if (increment(counter)) {
// counter was non-zero
use(object)
…

if (decrement(counter)) {
// counter reached zero
free(object)
…

counter

read counter

read counter

value: 1

value: 1

set to 2

set to 0

object

use

free

thread Bthread A

Figure 3.1. Non-atomic reference counters could result in an object being freed by a thread
A while concurrently being acquired by another thread B.

complicate matters, atomic_t is not exclusive to reference counters. Due to
such varied use, reference counters cannot be automatically identified and
found without developer intervention.

3.1.2 Intel MPX

The Intel Memory Protection Extensions (MPX) is a pointer-based spatial
memory safety mechanism (Section 2.3.1). It debuted in the Skylake
architecture [134, 125]. MPX provides new instructions for managing
and checking pointer bounds; and new registers for configuring MPX and
storing bounds. The pointer bounds are stored in separate metadata
without changing the representation of pointers. The Intel ICC compiler
supports MPX, and GCC added support in GCC 5.0 [125], although the
latter has since version 9.1 dropped support [67]. Because MPX is pointer-
based, it can perform narrowing (Section 2.3.3) and could potentially avoid
vulnerabilities inherent to allocation-based bounds checking [69]. However,
in practice, the GCC instrumentation must make concessions to avoid
compatibility issues from strict narrowing [125].

MPX and temporal safety MPX is not designed to provide temporal mem-
ory safety, nor does it do so. The pointer used to free dynamically-allocated
memory could be invalidated by setting its bounds to zero; however, there
is no mechanism by which to invalidate other pointers to the same memory.
Hence this would not prevent use-after-free errors. Oleksenko et al. [125]
propose adding a lock-and-key mechanism that provides temporal safety
using current MPX hardware.

36

Linux kernel memory safety

BD index BT index
03047

BD base address

reserved
pointer address

lower bound
upper bound

BT base address

Bound Directory Bound Table

configuration register

Figure 3.2. MPX bounds metadata uses a two-level mapping based on a pointer’s address.

Pointer bounds data When accessing a pointer to stack-based data, the
compiler can statically inject bounds information without the need for
additional metadata. This is not always possible, e.g., when loading a
pointer from shared global memory. For such cases, MPX provides the
bndstx and bndldx instructions that store bounds in disjoint metadata. To
check the bounds, they are first either loaded from the metadata or stati-
cally set by the instrumentation. The check is then done with the bndcl and
bndcu instructions, which check the lower and upper bounds, respectively.
Notably, a bounds check is performed in three distinct operations: 1) one
to load or set the bounds into a bounds register, 2) one to check the lower
bound, and 3) one to check the upper bound. This can cause TOCTOU type
errors in multi-threaded applications because the pointer and its bounds
are loaded as separate non-atomic actions.

Accessing pointer metadata The MPX bounds metadata is indexed based
on the pointer’s address using a two-level mapping, via a bound directory
(BD) to a bound table (BT) that contains the bounds (Figure 3.2). The
metadata must be managed by the software; the hardware instructions
only accelerate the addressing and lookup. On GNU/Linux, the program
reserves the address space for the BD and writes its address into a config-
uration register. On 64-bit systems, this is a 2GB memory range. Each
64-bit entry in the BD points to a 4MB BT, which in turn contains bounds
for the pointers. The memory pages of the BD are mapped to physical
memory only when written to. The individual BTs are similarly mapped on-
demand; when bndldx / bndstx encounters an empty BT entry, they trigger
a fault. The kernel manages the fault by mapping the 4MB memory space
for the BT and then allows the userspace process to continue transparently.

37

Linux kernel memory safety

3.2 Results: refcount_t and MPX in the Linux kernel

3.2.1 Preventing reference counter overflows in Linux

In Publication I, we present our work on protecting reference counters.
We answer three questions: 1) how to properly handle reference counter
overflows, 2) how to design an API for the Linux kernel, and 3) how to
apply kernel-wide changes efficiently?

Handling of reference counter overflows Reference counter overflows must
not be exploitable by causing the counter to reach zero while the referenced
object is still in use. Performance requirements prevent heavy-handed ap-
proaches that maintain the value, e.g., by dynamically switching to a larger
integer type [55]. But the vulnerability can be mitigated by saturating a
reference counter on overflow [20]. A saturated counter is locked at its
maximum value. Because the correct value is lost, the counter cannot be
safely incremented or decremented after saturation. Instead, a saturated
counter always returns success when incremented or decremented without
changing its value. In effect, this converts an exploitable use-after-free
error to a wasteful but otherwise harmless memory leak.

Design of refcount_t We began our work by analyzing the design of the
PAX_REFCOUNT feature of the grsecurity Linux patches [20]. It first intro-
duced the saturation mechanism by adding it directly to the atomic_t type.
PAX_REFCOUNT also introduces a new atomic_unchecked_t type to support uses
that depend on integer overflow. This unintuitively changes to atomic_t

behavior and requires changes in unrelated code that relied on the old
behavior.

We initially explored the possibility of porting PAX_REFCOUNT to the main-
line kernel. However, after initial porting efforts, a new refcount_t type
was proposed by Peter Zijlstra [171]. It uses the saturation mechanism de-
scribed above and also logs overflows to facilitate the fixing of the bugs that
caused the overflow. Because refcount_t is used for reference counting only,
its semantics are self-documenting. Moreover, it incorporates compile-time
checks that discourage unsafe use (e.g., ignoring return values of refcount_t
functions). Based on our porting efforts and analysis, we proposed API
improvements that allowed for wider adoption by accommodating existing
use cases.

Converting to refcount_t To support future development and aid in our
kernel-wide conversion efforts, we developed Coccinelle [152] patterns for
reference counters. Coccinelle is a text matching and transformation tool
that is used for automated patching and detection of problematic code.
While it could not unambiguously distinguish reference counters from all
other atomic_t uses, it proved useful in detecting candidates for refcount_t

38

Linux kernel memory safety

conversion. Not only did we use our Coccinelle patterns to create over
200 accepted patches, but we also integrated the pattern with the kernel’s
Coccinelle code-quality checks.

3.2.2 Using Intel MPX in the Linux kernel

MPX ostensibly supports kernel protection; for instance, by including
configuration registers for ring-0 (i.e., kernel-space) execution. However,
the metadata scheme cannot be trivially realized within the kernel. Not
only because of the high overheads observed in userspace applications
but more fundamentally due to the reliance on on-demand mapping. The
kernel, as-is, cannot handle page-faults caused by itself. This means that
the whole BD must be mapped to physical memory, or somehow always
pre-emptively mapped before use. The BT allocation faces the same issue.
Even an optimized approach that only reserves metadata for used kernel
memory would increase memory use by 500% (e.g., for each possible 64-bit
pointer a 64-bit BD-entry, and a 256-bit BT-entry).

Avoiding bounds metadata Our work in Publication I approaches this
challenge by first realizing that the kernel already tracks its own memory
allocations. We devised a way to utilize the kernel memory allocator
to retrieve allocation-based bounds instead of using bndstx / bndldx. In
practice, our instrumentation removes any bound metadata stores and
replaces loads with a function that retrieves the allocation bounds from the
allocator. This change removes additional memory requirements imposed
by MPX. However, it also changes the pointer-based bounds checking to a
mixed model that, in some cases, uses allocation-based bounds.

Implementation of MPXK Our prototype implementation, MPXK, builds
on the prior GCC MPX instrumentation. MPXK adds new runtime func-
tions to the kernel for loading allocation bounds. It then applies GCC
MPX instrumentation. To apply our modifications, we used the new
GCC compiler-plugin infrastructure and implemented our own MPXK
plugin [44]. Our plugin replaces any metadata loads with calls to our
added in-kernel functions.

3.2.3 Discussion: tricky bugs and environments

Detection reference counter bugs Reference counter errors can be subtle
and seldom cause directly observable side effects. In practice, even faulty
reference counters are unlikely to overflow under benign conditions. The
vulnerable code path would need to be exercised 2integer_bit_size times to trig-
ger the overflow. Consequently, reference counter overflow can be oblivious
to security-focused testing techniques such as fuzzing [16, 64]. However, a
typical error is a missing counter decrement, which will inadvertently lead

39

Linux kernel memory safety

to a memory leak that could be detected.

Security through better interfaces It could be argued that many errors
are due to poor interfaces that lead to ad hoc solutions. Linux reference
counters fit this description: they were traditionally implementing using
hand-crafted implementations around atomic_t. As the experience with
PAX_REFCOUNT exemplifies (Section 3.2.1), it is not always sufficient to provide
better security. Changes must also be intuitive and self-documenting
to be acceptable and support future use. However, as kref exemplifies
(Section 3.1.1), clean and secure interfaces must also accommodate existing
needs. The refcount_t design takes the best of both: 1) it efficiently prevents
overflows, 2) it has a clear use-case without surprising semantics, and 3)
it provides a wide API but includes compiler warnings that promote safe
use. This assessment is supported by the success of refcount_t conversion
efforts but also by its incompatibility with bugs. For instance, bugs caused
by missing return value checks that lead to reference counter underflows.3

Mixed bounds checking As discussed in Section 2.3, memory safety is
difficult to realize. MPXK takes a mixed approach to sidestep practical
limitations, i.e., by using either static pointer-based bounds or dynamically
loaded allocation-based bounds. However, allocation-based bounds check-
ing has already been shown problematic [69]. It is likely that such results
apply to the mixed approach of MPXK. Nonetheless, trade-offs and similar
mixed approaches are often needed for deployable defenses. A useful av-
enue of research would be to explore how such real-world deployments can
be systematically evaluated and compared.

MPX today As noted in Section 3.1.2, GCC has dropped MPX support
since version 9.1 [67]. Nonetheless, several research projects utilize MPX
in various ways but typically only use a subset of MPX instructions. For
instance, SGXBounds [100] uses the bndcl and bndcu instructions to perform
bounds checking within Intel SGX enclaves [45]. Due to the restricted
address-space of an SGX enclave, SGXBounds can store the bounds within
the unused bits of the pointer itself, thus not needing the MPX metadata.
In other cases, MPX is used for more coarse-grained enforcement, which
allows these approaches to forgo the metadata-use [96, 119, 132, 30].

Memory safety in restricted environments MPXK tackles the problem of
bounds metadata within the Linux kernel. Some recent projects focus on
protecting the kernel (e.g., kCFI [120] and KAISER [74]), but this space
is still largely unexplored by the research community. In comparison to
userspace, the kernel will introduce new requirements and restrictions
for other defenses also. Such restrictions should be researched further.
Moreover, other environments will impose different problems. Trusted

3lkml.org/lkml/2017/6/27/409

40

http://lkml.org/lkml/2017/6/27/409

Linux kernel memory safety

execution environments (TEEs)—which are discussed further in Chap-
ter 4—are a good example; due to their explicit focus on safety-critical
programs, their memory safety is of utmost concern. Defenses such as
SGXBounds [100] indicate that this space also offers new challenges and
opportunities for novel memory safety solutions.

41

4. Intel SGX side-channels

Intel Software Guard Extensions (SGX) is a hardware feature introduced
in the Intel Skylake CPUs [45]. It allows the creation of trusted execution
environments (TEEs) called SGX enclaves. An enclave provides three
main properties: 1) isolated execution, which prevents other processes from
observing its execution state (e.g., CPU registers and enclave memory),
2) sealing, which binds sensitive data to a specific device, and 3) remote
attestation, which a remote party can use to verify that specific software
is running in an enclave on real SGX hardware. An enclave provides
confidentiality and memory integrity within an untrusted environment,
e.g., on an untrusted client device or on shared hosting (Figure 4.1).

An SGX enclave is set up by loading it from unprotected memory into
enclave memory. The loaded memory, e.g., code and data, is measured
to support integrity checks and attestation. To start the enclave, the
processor is switched to enclave mode, and the execution transferred to a
fixed enclave entry point. An enclave is a started from userspace and has
the memory access permissions of the invoking process. It relies on the
untrusted OS kernel for scheduling and other system services. However,
SGX prevents the kernel and other execution modes from observing an
enclave’s execution state. It also ensures that data is encrypted when it
leaves the CPU boundary and is written into memory.

Intel states that side-channels are not considered within the threat model
of SGX [88]. However, SGX-enabled hosting services are currently offered
by several companies (e.g., Microsoft Azure [117], IBM Data Shield [81]).
Considering that SGX is used in such environments, side-channels are a
concern irrespective of Intel’s envisioned threat model.

In Publication II we investigate a branch-shadowing side-channel on
Intel SGX. Like other software side-channels—e.g., cache side-channels—it
infers confidential data by observing changes in micro-architectural be-
havior caused by the processing of that data. Specifically, it exploits the
behavior of branching instructions. This makes traditional defensive pro-
gramming approaches ineffective [4]. Compile-time instrumentation can
directly control branch instruction, and therefore, is ideal for addressing

43

Intel SGX side-channels

ring 0
(kernel space)

ring 3
(user space)

untrusted
application

SGX enclave

untrusted kernel

untrusted
application

remote
attestation

Figure 4.1. An Intel SGX enclave is a TEE within an otherwise untrusted system. Remote
attestation can be used to establish a trusted communication channel to a
remote enclave.

this side-channel (RQ1).

4.1 Background: side-channels and SGX

A side-channel consists of some observable property that depends on a
targeted confidential property. For example, the power consumption of a
device could be used to leak secret keys from a device [95]. Side-channels
can be divided into physical and software side-channels. The distinction
can be fuzzy, as software interfaces can give access to physical properties.
In this work, we focus solely on software side-channels. They are interest-
ing because they do not require physical access and could be used remotely.
An attacker A on a virtual hosting platform could use software-only side-
channels to attack co-located virtual machines (VMs).

Cache side-channels Cache side-channels are well known. They exploit
the CPU’s last-level cache, which is shared between cores [167]. Accessing
data in the cache is significantly faster than loading it from memory. This
can be exploited to infer what data has been accessed by other processes on
the same core. To exploit the cache, A first clears it (e.g., by filling it with
other data, or flushing it programmatically). If a subsequent data load of
the targeted data is fast, A can infer that another process has populated
the cache by accessing it. Although SGX encrypts memory, the data in
the CPU caches remains unencrypted, and so allows cache-based side-
channels against SGX [22, 118]. SGX-specific defenses in the literature
randomize data [21], reserve a core for the enclave [126], or prevent enclave
interruption [143].

Controlled-channel attacks SGX side-channels are not limited to the CPU
cache. Because the execution of an SGX enclave is controlled by an unpriv-

44

Intel SGX side-channels

ileged kernel, the kernel itself could be mounting attacks on the enclave.
Although the kernel cannot decrypt enclave memory or inspect registers
during enclave execution, it 1) knows the code layout because the enclave
was loaded from userspace, 2) controls process scheduling and can inter-
rupt the enclave, and 3) controls the memory page tables, including those
for enclave memory. Controlled-channel attacks exploit this by selectively
marking enclave memory as unavailable in the page table. This causes the
enclave to page-fault, which allows A to infer which memory pages are
being accessed [166]. Controlled-channel attacks have been demonstrated
to leak encryption keys from OpenSSL and Libgcrypt [144]. Later work has
shown that page accesses can be observed even without page faults [24],
thus circumventing defenses that prevent page faults [143].

Branch-shadowing side-channel The branch-shadowing attack exploits
the branch prediction unit (BPU) of the CPU [107]. The BPU is used to
perform speculative execution during transient execution. During transient
execution the CPU executes a batch of instructions out-of-order. Out-of-
order execution allows the CPU to optimize the use of the memory and
other resources. However, when transient execution reaches a conditional
or indirect branch, the subsequent instruction might not be known. For
instance, the target of an indirect function call might be pending a memory
load. Speculation is used to predict the outcome of branches so that
transient execution can continue. To facilitate this, the BPU keeps a
history of prior branch outcomes. The SGX branch shadowing attack
exploits the branch target buffer (BTB) that keeps a history of branch
targets. Other BPU side-channels target the pattern history table (PHT),
which is used to predict whether a (conditional) branch is followed or
not [63].

Because behavior changes at run-time, mispredictions will occasionally
occur. Mispredicted transient execution must be rolled back. This is not
visible on the architectural level; the processor discards the bad state and
then computes the correct branch in order to reach the correct architectural
state. Results are only committed when they are confirmed (e.g., when
all pending memory loads have been completed). A misprediction can be
inferred by measuring the execution speed of a branch. Recent Intel CPUs
also provides the last branch record (LBR) performance counter that can
be enabled to log mispredictions [83].

Because branch behavior is often data-dependent, mispredictions can
be used as a side-channel. BPU side-channels can, for instance, leak
RSA-keys [4] and break ASLR [62]. BPU internals and functionality are
proprietary. Nonetheless, experimental results have shown that BTB
is indexed based on specific bits from the branch instruction’s memory
address. A can thus create a shadow branch that shares the BPU history
H with another targeted instruction (Figure 4.2). Because history is shared
between different processes on the same core, the shadow branch can be

45

Intel SGX side-channels

application malicious application

SGX enclave

0x00040078 …
0x00040078 cmp <secret>, 0
0x00040078 jne <target>
0x00040078 … 0x00040078 …

0x00040078 jmp <elsewhere>
0x00040078 …

collaborating kernel

0x00040078 …
0x00040078 jmp <elsewhere>
0x00040078 …

BTB

H

Figure 4.2. A can infer enclave branching behavior dependent on confidential data by
observing how it affects the BPU history. The branch history H is first primed
with a known state (❶), then the attacked enclave is allowed to execute (❷).
The enclave execution will, depending on the confidential data, change the
branch history H. A will then interrupt the enclave before (❸), enable LBR,
and re-execute the shadow branch to see if H was affected by the enclave (❹).

in another process. This also applies to branches within SGX and can be
used as a side-channel to monitor enclave execution [107].

The branch-shadowing attack To mount an attack, A first analyzes the
enclave code and identifies a branch instruction to target. Although the
enclave is in encrypted memory, A can observe the loading process and
thus knowns the memory layout of the code sections. A then constructs
a shadow branch that uses the same BPU history H as the target branch
(Figure 4.2). Before launching or resuming the enclave, A primes H to a
known state by repeatedly executing the shadow branch. A then allows
the enclave to briefly execute before interrupting it again. After enabling
the LBR performance counter, A executes the shadow branch again. If a
misprediction is reported in the LBR, A can infer that H was changed by
enclave execution. The execution flow leaks information on processed data
and has been shown sufficient to leak RSA-keys from an SGX enclave [107].

Initial branch-shadowing defenses Zigzagger [107] is an initial defense
against branch-shadowing and depends on A ’s inability to perform fine-
grained interruptions of an enclave. Conditional branches are first con-
verted to indirect branches. The indirect branch targets are setup using
conditional moves (cmov). The execution of indirect and unconditional
branches can still be inferred via shadow branches. To prevent this Zigzag-
ger executes all related branch instructions before reaching the intended
target. The security of this scheme requires that A cannot perform fine-
grained interruptions to distinguish the meaningful branches from the
decoys. Unfortunately, later work shows that enclave execution can be
controlled at single-instruction granularity [157]. This allows A to observe
each branch separately, thus breaking Zigzagger.

46

Intel SGX side-channels

4.2 Results: preventing SGX branch shadowing

Fine-grained branch-shadowing can break randomization, such as ASLR [62],
including SGX-specific randomization techniques [138, 157]. Defenses that
target timing side-channels are similarly ineffective against branch shad-
owing. Zigzagger is promising but relies on a weak adversary model [157,
107]. In Publication II we propose a novel approach that thwarts a strong
adversary mounting a branch-shadowing attack. Our approach relies on
compile-time instrumentation to randomize program control flow. To min-
imize increased attack surface and allow attestation, our approach only
randomizes small sections of the code.

We first re-use the idea of implementing branches using conditional
moves. All branches are then routed via a randomized trampoline, which
is a small piece of code that immediately branches (or jumps) to another
memory address. Branches into the trampoline are always followed, and
thus reveal no information to A . Because the trampoline locations are
randomized, A is forced to guess the location of the trampoline to shadow.
Furthermore, because the BPU history is of limited size, A only has a
limited number of guesses. With enough entropy, A cannot reliably shadow
the correct address before it is overwritten, thus preventing the attack.

4.3 Discussion: side-channel challenges

The branch-shadowing attack relies on obscure—and proprietary—run-
time behavior of the CPU. It cannot be prevented by common side-channel
resistant programming practices. For instance, balancing the cycle counts
of different branches is ineffective because the attack relies on the branch
instruction itself. Branch-instruction placement also depends on compiler
optimizations, such as inlining and loop unrolling. This alone suggests
that branch shadowing is best tackled by the compiler.

However, side-channels cannot be viewed in isolation. Generating a
program with only mov instructions would hide all branches, but also in-
crease memory use and code size, thereby making cache side-channels
easier to execute [57]. This also applies to our work, which only affects
the branch-shadowing attack, and must be combined with other defenses
to provide full protection. Moreover, A is not limited to using one attack.
For instance, by monitoring memory accesses, A could limit the entropy
afforded by randomization techniques, including our defense. Any side-
channel defense should be compatible and integrated with complementary
defenses, and avoid introducing new vulnerabilities. The complexity of
such interactions suggests that a systematic approach is needed.

Spectre attacks The stage is drastically changed with transient execution
attacks [27], e.g., Meltdown [110] and Spectre [94]. Transient execution

47

Intel SGX side-channels

attacks have, unsurprisingly, also been demonstrated on Intel SGX [98,
32, 156]. Spectre, in particular, has a marked resemblance to branch-
shadowing as it also exploits the BPU. In contrast to side-channel attacks
that monitor changes caused by the victim process, Spectre attacks manip-
ulate the micro-architectural state to affect the transient execution of the
victim process. To perform a Spectre attack, A would first train the BPU
to mispredict transient execution so that it accesses some confidential code.
Due to the misprediction, the transient state is eventually rolled back. To
leak the data, A uses a covert channel to transmit the data out of the
transient state. The CPU-caches are affected by transient execution even
when the execution is rolled back later. This can be exploited by ensuring
that the transient execution, before rollback, performs some data access
that depends on the confidential data. Finally, A just needs to probe the
associated cache to retrieve the confidential data [167].

The Spectre attacks reverse the role of micro-architectural side effects.
Traditional side-channel defenses hide observable differences in the micro-
architectural state after confidential data is processed. But Spectre attacks
focus on manipulating the prior state in order to cause the transient ac-
cess of confidential data. This requires different defense strategies. Our
branch-shadowing defense prevents a BPU side-channel but not Spectre.
In fact, the added static trampoline entry-points provide more branches to
manipulate in a Spectre attack. But Spectre defenses are similarly ineffec-
tive against branch-shadowing. For instance, based on our evaluation in
Publication II, speculation fences [84] that prevent speculation beyond a
specific point, do not prevent branch shadowing.

Future outlook Because side-channels (and transient execution attacks)
are nuanced, depend on obscure micro-architectural behavior, and evolve
quickly, they require systematic and automatic defenses. Side-channels
often rely on hardware features, not bugs. These features are often neces-
sary for performance; e.g., caching and speculation substantially improve
execution speed. In the case of SGX, one could envision hardware solutions,
such as conditionally-updated or separate micro-architectural states [65,
91]. But in the short-term, hardware fixes are unavailable. Intel has intro-
duced microcode updates that mitigate Spectre attacks on SGX [84]. But
these are not effective against all attacks. For instance, based on our evalu-
ation presented in Publication II, the indirect branch restricted speculation
(IBRS) feature does not prevent SGX branch shadowing. General hardware
fixes are even more unlikely to emerge due to performance constraints.
For instance, cache side-channels have been known for decades and are
an accepted cost of performance. As efficient protection seem unlikely to
appear, this suggests that transient execution attacks are here to stay.

Software-based solutions are needed, with or without upcoming hard-
ware assistance. Meanwhile, solutions must allow conditional protection
to limit performance impact. To manage complexity, side-channel defenses

48

Intel SGX side-channels

cannot be built in isolation. Interactions among different solutions must be
recognized and accounted for. In practice, this requires systematic and au-
tomated instrumentation support. Although binary-only instrumentation
might be possible, compile-time instrumentation is more suited to modify
code structure, e.g., by modifying the CFG. In conclusion, we need compiler
support for 1) conditional protections that only protect specific data, 2) pro-
grammer annotations that mark sensitive data, and 3) hardware-specific
defenses that minimize performance overheads.

49

5. ARM Pointer authentication

Full memory safety solutions so far have proven inefficient or been built
around custom hardware. Successful and widely-deployed defenses, in
contrast, have a more narrow scope. They also typically target different
stages of an attack: for instance, stack canaries [47] do not prevent mem-
ory errors, but instead, allow the detection of stack corruption before a
corrupted return address is used. Other defenses prevent memory errors
directly. W⊕X policies prevent the injection of executable memory [116, 130].
Stateless CFI solutions verify function call targets without addressing
underlying memory errors [2]. None of these approaches are perfect. But
they are efficient and significantly decrease the attack surface.

In this spirit, pointer integrity only aims to prevent the corruption of
pointers [101]. It does not provide full memory safety; it only guaran-
tees that pointers cannot be corrupted. Nevertheless, this is powerful
because pointer corruption can be used to 1) create an arbitrary-write
primitive [168], 2) redirect program control flow [141], and 3) mount non-
control data attacks [33]. Pointer integrity can thus prevent a large class of
attacks. Even when an attacker A has an arbitrary-write primitive—e.g.,
using an unbounded indexing error—powerful attacks such as ROP [141]
and DOP [79] are prevented if the integrity of pointers is guaranteed.

In Publications III and V, we explore how the recent ARMv8.3-A Pointer
Authentication (PA) extension can be used to achieve pointer integrity. We
investigate weaknesses in PA-based defenses and show how to mitigate
them. In Publication IV, we demonstrate the general nature of PA by using
it to harden stack canaries.

5.1 Background: ARMv8.3-A pointer authentication

The PA extension was introduced in the ARMv8.3-A architecture released
in 2017 [133, 8]. PA provides hardware support for “signing” and verifying
pointers with an embedded MAC, called the pointer authentication code
(PAC). Because the PAC is generated by hardware, PA has high perfor-

51

ARM Pointer authentication

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits3 – 23 bits

Figure 5.1. PA avoids both metadata and changing pointer size by embedding the PAC in
the sign-extension bits of a pointer.

mance. Evaluation of a candidate algorithm, QARMA, indicates that a
PAC can be calculated in only four cycles on a 1.2GHz core [13]. 1 This
makes PA feasible for run-time protection of production software. Because
the A-class architecture targets full-fledged operating systems and is used
by most contemporary mobile phones, PA is expected to be widely deployed.

PAC construction The PAC is calculated using a tweakable MAC algo-
rithm. It is based on a 128-bit hardware-protected key, an instrumentation-
dependent 64-bit modifier as the tweak, and the virtual address (VA) of
a pointer. PACs are created and verified with explicit instrumentation
using the new pac and aut instructions. The pac / aut instructions have
several variants, each of which uses one of five available keys. Two keys
protect code pointers, two data pointers, and one is for generic use. When a
pointer is signed, the resulting PAC is stored in the sign-extension bits of
the 64-bit pointer (Figure 5.1). Its size is between 3 and 31 bits, depending
on how many bits are reserved for the VA and whether 8-bits are reserved
for memory tagging [8]. On default AArch64 Linux configurations, the
PAC is 16 bits [133]. PA also provides the pacga instruction that uses the
generic key to calculate a 32-bit PACs over an arbitrary 64-bit value and
the given 64-bit modifier.

Current PA support The Linux kernel supports—since v5.0—userspace
PA by initializing PA keys at process exec [109]. PA-based return-address
protection is supported by both the GCC [70] and Clang [35] compilers.2

On ARMv8 architectures, the function return address is stored in a specific
register, LR, at function entry. Non-leaf functions must then store it on
the stack to allow nested function calls that overwrite LR. This leaves
the return address vulnerable to corruption and allows ROP attacks on
ARM [97]. The returned address is signed before it is stored on the stack
and again verified before function return.

The PA modifier As Linux userspace PA keys are process-specific, they are
constant throughout the process lifetime. This binds the signed pointers to
a specific process but allows pointers within a process to be swapped. We
call this attack a reuse attack, as it reuses previously signed pointers in a

1ARM does not mandate the use of QARMA, but mentions it as an alternative [8].
2On AArch64 targets with PA, return-address protection can be enabled with
the -msign-return-address flag, or the -mbranch-protection flag that includes other
defenses.

52

ARM Pointer authentication

different context. But the PAC value also depends on the instrumentation-
controlled modifier. The modifier value can be used to constrain reuse
attacks by binding a pointer to a specific context or property. The return-
address protection of GCC / Clang, for instance, uses the stack pointer (SP)
value as the modifier. The SP is convenient as its value changes during
program execution but is guaranteed to be the same at function entry and
exit. This narrows the scope of reuse attacks without the need to explicitly
keep track of the modifier value.

PA error detection To verify a signed pointer, the PAC is re-calculated. If
the resulting PAC matches the PAC embedded in the pointer, verification
succeeds. On success, the PAC is stripped and replaced with the sign-
extension bits. On failure, the PAC bits are first replaced with the sign-
extension bits, after which the pointer is invalidated by flipping a specific
high-order bit. Failure does not cause an immediate fault. However,
when the pointed-to address is translated by the memory management
unit (MMU)—for instance, during instruction fetch on return—the MMU
detects the invalid bit and issues an address translation fault.

5.2 Results: pointer authentication and stack safety

In this dissertation, I explore PA through three publications: 1) in Publica-
tion III, we show how to mitigate PA reuse attacks, and more broadly, how
to realize run-time type checking with PA; 2) in Publication IV, we demon-
strate the versatility of PA by using it to harden stack canaries [47]; and
3) in Publication V, we show that PA can provide precise return-address
protection similar to hardware-based shadow stacks [82].

Type-checking with PA The modifier used for PACs should ideally be
unique to a specific pointer value; this would prevent any reuse attacks.
But the modifier must also be available both when the pointer is signed
and when it is verified. A randomly assigned modifier—or a nonce—would
require the modifier to be securely tracked or otherwise associated with
the correct pointer. If such a scheme were possible, it could as well secure
the pointer itself without the need for PA. In Publication III, we propose to
bind the modifier to the pointer type. This affords two powerful properties:
1) it prevents the injection of arbitrary pointers by using PA; and 2) it
enforces run-time type checking, even in the presence of reuse attacks.

Our prototype implementation, PARTS (Publication III), is implemented
on LLVM 8.0. It supports run-time type-checking for both code and data
pointers. It also features an improved return-address protection scheme
that binds each return address not only to the SP value but also to a
function-specific identifier. This drastically decreases the scope of reuse
attacks but does not completely prevent them. Our benchmarks show that

53

ARM Pointer authentication

returnAddressi

signedReturnAddressi

PAC

returnAddressi+1

signedReturnAddressi+1

PAC

returnAddressi+2

signedReturnAddressi+2

PAC

Figure 5.2. PACStack uses a PA to generate a chain of PACs that uniquely identifies a
specific program execution path. Only the topmost signedReturnAddress is
secured in a register to allow precise verification of return addresses.

PARTS incurs a very low overhead (< 0.5%) when used to protect code
pointers and return addresses. This prevents ROP and other control-flow
attacks with a minimal performance overhead.

Generating stack canaries with PA Stack canaries (Section 2.2.1) are a
low-cost defense. They continue to be widely supported by compilers since
their conception in 1998 [47]. But stack canaries suffer from known weak-
nesses (e.g., using a program-wide reference value). Proposed hardening
schemes (e.g., DynaGuard [131], DCR [76], and polymorphic canaries [160])
have not been enabled by mainstream compilers, presumably because the
performance cost is too high to be justifiable. PA return-address protection
already functions as a stack canary. In Publication IV we build upon this
realization and design a more secure stack canary scheme that also incurs
negligible performance overhead.

Our design uses PA to generate canaries without depending on in-memory
reference values. When needed, we also generate multiple canaries to
detect precise overflows that could avoid detection when only one canary
per stack frame is employed. Each added canary is constructed as a signed
pointer to the previous one; this allows easy verification of the canaries and
ensures that each canary within a stack frame is unique. All canaries are
generated using a function-specific modifier value; this binds the canaries
to their respective functions. Evaluation of our prototype, PCan, shows
that these additions incur only negligible overhead, despite the substantial
gain in security compared to traditional canaries.

PA-based return-address protection An ideal PA-modifier scheme is frus-
tratingly elusive. Nonetheless, in Publication V, we show that such a
scheme is possible for return-address protection. Our design completely
eliminates reuse attacks and limits possible attacks to guessing. The in-
tuition behind our solution is that a chained-MAC of return addresses
uniquely identifies a call flow. With PA, we can efficiently generate the
chain and then use it to verify return addresses (Figure 5.2). Only the final
value is needed to verify the whole chain of return addresses. Because
each function only adds and removes the topmost value, no extra PAC
calculations are needed compared to prior PA return-address protections.

We further refine the design by using signed return addresses, areti,

54

ARM Pointer authentication

defined as:

signedReturnAddressi = sign(returnAddressi,signedReturnAddressi−1)

The previous signed return address, signedReturnAddressi−1 is stored
on the stack. The current signedReturnAddress is always kept in a reg-
ister. To support this, the calling convention is changed such that the
signedReturnAddress is passed to the callee. Although this technically
breaks the application binary interface (ABI), our prototype implementa-
tion uses a callee-saved register to pass signedReturnAddress. This allows
functional compatibility with uninstrumented code, but still weakens the
security guarantees if uninstrumented code is called.

Because the intermediate signedReturnAddress values are exposed in
memory, A could attempt to find collisions. To prevent this, we additionally
use PA to create a masking value that hides the PAC before it is written into
memory. This prevents A from recognizing collisions. The only remaining
attack is guessing, which has a success probability dependent only on
the PAC size. Evaluation of our prototype implementation, PACStack,
indicates overheads of less than 1%, or less than 0.5% without masking.

5.3 Discussion: beyond pointer authentication

Our work on PA shows that it can be used to implement novel and powerful
security schemes. Both PARTS and PACStack (Publications III and V)
protect pointers. By providing the pacga instruction ARM, invites uses that
go beyond pointers. 3 PCan starts exploring this space (Publication IV),
but other directions are likely possible. A construction similar to PACStack
could, for instance, be used to protect data structures other than the
program stack.

Randomly assigned PA modifiers PA security depends on two things: the
hardware-protected keys, and the instrumentation-chosen modifier. Cur-
rent approaches instantiate the keys at process startup. This prevents the
injection of arbitrary pointers and effectively binds the signed pointer to
the process context. Further narrowing of context is left to the modifier.
An ideal solution would be akin to nonces. But nonces need to be tracked.
This suggests that practical solutions are limited to static modifiers or
naturally tracked values such as the SP value.

Static modifiers Statically assigned modifiers that are unique to a partic-
ular pointer value would be ideal. If a pointer has multiple values during
execution, this is not possible. Even when the pointer, at run-time, will
have only one value, this might not be detectable by static analysis. Static

3This is also explicitly mentioned in the ARM documentation [8].

55

ARM Pointer authentication

read-only pointers are a notable exception as they could use a pointer’s
storage address as its modifier. Because no other pointers are written to
the same address, the reuse attack is eliminated. For instance, C++ virtual
tables—which contain pointers to the virtual functions of a class—are
static and could be protected using this method. But in most cases, this
approach has limitations familiar from stateless CFI.

PA as a CFI mechanism As discussed in Section 2.2.2, CFI enforces that
a specific call site always targets a function belonging to the correct equiv-
alence class (EC) [2, 3]. Because the EC is typically more inclusive than
necessary, such policies can be circumvented [72, 29]. PA modifiers are
different; they are not only used at call or dereference to verify, but they
are also used to sign the pointer. Any ECs with intersecting pointers must,
therefore, be merged. This suggests that PA modifiers based on static
analysis are ineffective in preventing the exploitation of reuse attacks.
Note that, in contrast to stateless CFI, PA always prevents injection of
arbitrary pointers; this consideration only applies to reuse attacks.

Reuse attack prevalence Our work considers reuse attacks on PA. But do
reuse conditions—for instance, when using the SP as a modifier—occur
in real programs? Based on our preliminary evaluation, the answer is
yes. This is, perhaps, somewhat counter-intuitive. But because stack-
frames are aligned, different stack-frames often have the same size despite
containing different variables.

A natural follow-up question is whether reuse attacks are exploitable
in practice. More research is needed, but the answer is likely yes. In the
context of CFI, prior research [137, 51, 72, 29] suggests that reuse attacks
can be exploited. Evaluating CFI effectiveness is notoriously hard [165].
Nonetheless, metrics based on the EC count [26] could be applicable to PA.
But CFI metrics do not model the need to generate reusable pointers. To
accurately model reuse attacks, an analysis would need to consider the
possible call flows that generate reusable pointers. A full analysis is likely
not feasible, and so new heuristics are needed.

Upcoming hardware-security primitives PA is not the only ARM security
extension being rolled out: ARMv8.5 is adding the new Memory Tagging
Extension (MTE) and BTI extensions. MTE is a memory tagging scheme,
which allows userspace programs to tag pointers and memory regions.
The hardware then ensures that tagged memory is accessed only with
correctly-tagged pointers. BTI enforces that indirect branch instructions,
e.g., indirect function calls, always have a valid target, e.g., a function
entry point. Coupled with PA, these constitute a varied and powerful set
of primitives that will likely allow novel defenses. Research is needed to
understand the interactions between different security mechanisms better.
RISC-V has already proven itself to be fertile ground for exploring new

56

ARM Pointer authentication

hardware features, for instance, run-time scope enforcement [123], control-
flow attestation [53], data-flow isolation [146], and tagged memory [148].
It could also be used to combine different extensions and explore new
emergent properties.

A related question is whether similar policies are possible using dif-
ferent hardware extensions. For instance, can PA-based policies be im-
plemented using Intel hardware? Prior research has demonstrated that
policies similar to PARTS (Publication III) can be implemented using
hardware-accelerated cryptographic primitives on Intel CPUs [113]. But
this approach has significantly higher performance overhead. PACStack
(Publication V) and hardware-based shadow stacks [25] are other examples,
where both mechanisms achieve very similar performance and security
properties. These examples are likely not isolated.

57

6. Discussion and Conclusion

6.1 Preventing memory errors in unsafe languages

One of my objectives in this dissertation has been to use hardware-assisted
instrumentation to prevent memory errors. Prior work has approached this
challenge from several directions in the literature (Section 2.3). One suc-
cessful approach is the use of run-time checks, typically added at compile-
time. Currently deployed approaches are mostly software-based. For
example, the stateless CFI supported by Clang [37]. Unfortunately, many
defenses in the literature are impractical to deploy, either due to perfor-
mance considerations or compatibility issues. A recent survey of CFI
research found serious compatibility problems—for instance, with excep-
tions and dynamic linking—in most designs [165]. Nonetheless, there are
several fruitful research directions, including fuzzing, static analysis, and
hardware-assisted memory safety.

Fuzzing An alternative to run-time checks is to focus on testing. Fuzzing
is a technique for automated testing which has gained considerable trac-
tion [147]. It creates test cases either randomly [16, 64] or uses techniques
such as symbolic execution to improve test-generation efficiency and get
code coverage feedback [71]. However, errors must be both triggered and
detected. As seen with reference counters (Chapter 3), some error types
can be inherently hard to trigger using fuzzing techniques. Even when
triggered, a memory error might not be detected unless it causes a crash.

To improve the detection rate, fuzzed programs can be instrumented with
additional run-time memory safety checks. Because fuzzing is performed
during testing, it does not affect the performance of deployed programs.
This permits the use of tools such as AddressSanitizer during fuzzing [11].
Nevertheless, resources spent on fuzzing are not free, and so the perfor-
mance of fuzzed binaries affects cost of development.

59

Discussion and Conclusion

Static analysis Static analysis can be used to detect errors during devel-
opment. Unfortunately, many types of static analysis are NP-compete
problems [104]. In particular, memory safety analyses have been shown to
be undecidable [136, 169]. Therefore, analyses that detect memory errors
are often either probabilistic [17] or focus on specific error types [66, 58].
For instance, the Clang compiler offers multiple static analysis tools that
can detect different errors [36]. Many memory safety defenses rely on
static analysis for instrumentation. To guarantee run-time functionality,
such defenses must be conservative when analysis results are incomplete.
Consequently, security policies based on static analysis are often needlessly
permissive. For instance, see Section 2.2.2 on stateless CFI.

Run-time security mechanisms could be incorporated into analyses to im-
prove their accuracy and efficiency. A security mechanism such as PARTS
(Section 5.2, Publication III) restricts the possible run-time values of a
pointer. By being made aware of added security properties, static analy-
ses could be made both faster and more precise. Allocation-based spatial
memory safety is another example. Although the allocation bounds cannot
prevent all attacks [112], they isolate different memory regions, and so
allow local reasoning of memory accesses. The opposite approach is already
true: deployed defenses—for instance, stack canaries in Clang [35]—often
minimize performance overhead by using static analysis to omit unneces-
sary instrumentation. Exploring tighter integration of security policies or
mechanisms into static analyses will likely be worthwhile.

Holistic hardware-assisted security The recent influx of new memory-
safety features in off-the-shelf hardware is a central topic of this dis-
sertation (Publications I, II–V). My work has focused primarily on the
run-time security aspects, which undoubtedly are essential. However,
run-time security, fuzzing, and static analysis are not mutually exclusive.
Future research should focus on their complementary aspects and explor-
ing closer integration. Fuzzing, for example, could directly benefit from
hardware-assisted memory safety. Because it is a time-intensive activ-
ity, performance gains afforded by hardware-assistance directly transfer
to fuzzing. As discussed above, static analyses would also benefit from
closer integration with hardware-assisted memory safety guarantees. By
following such research directions, hardware-assisted memory safety can
improve the whole software life cycle. This would increase the value of
such features, and consequently, increase the incentive to introduce new
security features in upcoming hardware.

6.2 Memory safe languages

When discussing memory safety in C / C++, one cannot avoid the impli-
cations of memory-safe languages. Of these, the Rust [114] programming

60

Discussion and Conclusion

language is perhaps the most notable. As an example, I will discuss Rust,
but the examination also applies to other memory-safe languages. The
devil’s advocate would argue that it would be better if developers switch to
using Rust rather than trying to protect C / C++. However, as discussed in
Section 1.1, C / C++ is not going anywhere anytime soon. Perhaps it is more
interesting to ponder what hardware-assisted memory safety research and
Rust can offer each other. The run-time security of Rust depends on two
things: 1) extensive static analysis that detects and prevents memory
errors at compile-time, and 2) run-time checks, for instance, to validate
array bounds. Consequently, a program comprised of safe Rust code offers
strong security properties.

Mixed code But Rust also supports unsafe code, that is, code that allows
unsafe operations (e.g., raw pointers). This allows efficient implementa-
tion of low-level code, such as device drivers. But unsafe code breaks
the security guarantees. A Rust library that uses unsafe behavior could
compromise the security of safe code sections. In some cases, such libraries
can be proven not to affect the safety of safe code sections [90]. But in the
general case, this might be impossible. Moreover, the Rust foreign function
interface can also be used to interact with C / C++ libraries [93].

To maintain the security of safe Rust code, any unsafe Rust and C / C++
libraries could be compartmentalized. Process isolation can be used to
isolate C / C++ libraries, but this incurs a high overhead [103]. Meanwhile,
hardware-assisted security could be used to: 1) guarantee the run-time
safety of some unsafe Rust operations, 2) mitigate the impact of unsafe
Rust and C / C++, or 3) provide performant in-process isolation of C / C++.
Efficient in-process isolation can be achieved using capability machines
such as CHERI [154]. Moreover, recent works have also demonstrated that
this can be achieved using commodity hardware, such as Intel MPX [96]
or PKU [155]. It is likely that similar properties can be realized with
security-primitives in ARM architectures.

Compile-time performance As Rust aficionados will attest to, Rust can
achieve run-time performance on par with C / C++. Improved run-time
performance comes at the cost of degraded compile-time performance; Rust
compilation times can be orders of magnitude longer than similar C / C++
code. Compile-time overheads are a result of comprehensive static analysis.
As mentioned above, analyses could benefit from modeling new security
properties afforded by hardware-assistance (Section 6.1). It might also
be possible to omit compile-time verification of security invariants that
can be guaranteed by the hardware. Overall, Rust and C / C++ will likely
continue to exist in a shared ecosystem. Consequently, research in this
area is not a zero-sum game between safe and unsafe languages.

61

Discussion and Conclusion

6.3 Understanding memory errors and exploitability

Memory errors are a fuzzy problem. Various definitions abound (Sec-
tion 2.3). Theoretical definitions of memory safety exist, but can be too
expensive, too restrictive, or impossible to apply in the general case. For
example, large-scale programs might be too complex for complete analy-
sis or have unavoidable dependencies to code that cannot be proven safe.
Consequently, such definitions are not practical beyond relatively small
security-critical software (e.g., cryptographic libraries). Approaches that
permit partitioned [159] or conditional analyses [41, 15] could bridge this
gap.

Compartmentalization Memory safety is often an either-or proposition.
This limits the usability of memory safety analyses in environments that
must use unsafe code. One solution is to compartmentalize such code and
libraries into their own security domain. Efficient solutions to achieve this
have been demonstrated using, for instance, CHERI [154], ARM memory
domains [170], Intel MPX [96], and PKU [155].

Weird machines and exploitability As memory errors often cannot be com-
pletely avoided or proven absent, it behooves to ask when a memory error
is exploitable. But analyzing the exploitability of memory errors is a diffi-
cult task [59]; the evaluation of CFI is a prime example of this difficulty
(Section 2.2.2). The concept of weird machines has been proposed to facili-
tate such analysis. Intuitively, a weird machine is the finite state machine
(FSM) that emerges when a program reaches an unintended state [23,
158], for example, as a result of a memory error. In this model, attacks
like ROP [141] execute on a weird machine. The machine is defined as
the intended FSM extended with the states and state transitions induced
by ROP gadgets. Indeed, research suggests that weird machines could—
not only have predicted ROP and DOP [79] attacks—but also made CFI
weaknesses [137, 51, 72, 29] immediately apparent [59].

Analyzing unsafe code In this dissertation, I only scratch the surface
of exploitability and static analysis of memory errors. Nonetheless, the
presented publications raise questions of exploitability. For instance: 1)
how does pointer- and allocation-based memory bounds checking differ in
terms of security (Publication I), 2) how different PA-policies affect the
exploitability of reuse attacks (Publication III), and 3) how can we design
meaningful side-channel defenses within a rapidly evolving threat land-
scape (Publication II)? My results suggest that more research is needed. In
particular, models that capture the interactions between unsafe and safe
code would allow practical analysis of codebases that cannot fully adhere
to strict standards or guarantee the memory safety of all components.

62

Discussion and Conclusion

6.4 Conclusion

In this dissertation, I have demonstrated how to use security mechanisms
readily available in off-the-shelf hardware to realize strong and performant
memory safety defenses. My work on mitigating the branch-shadowing
attacks on Intel SGX (Publication II) and the Spectre attacks (that surfaced
at the same time) are a prime example of the complexity involved in
mitigating run-time attacks. Such complexity is not limited to mystifying
side-channels; memory errors, and in particular their exploitation, are
notoriously hard to evaluate. However, hardware-assisted security features
can provide guarantees beyond what is feasible in software alone. The
benefits of hardware-assisted memory safety are not restricted to run-
time. Other techniques such as memory-safe languages, fuzzing, and static
analysis can benefit from advances in hardware-assisted memory safety.
My work approaches hardware-assisted memory safety by demonstrating
how to use Intel MPX (Publication I) and ARMv8.3-A PA (Publications III–
V). These are not prototype-hardware built to accommodate research; they
are deployed in widely-available commodity hardware. This allows greater
opportunities for my work to move beyond the sphere of academic research
to protect real systems in use today.

63

Bibliography

[1] "Bulba" and "Kil3r". “Bypassing StackGuard and StackShield”. In: Phrack
10.56 (2000). URL: http://phrack.org/issues/56/5.html (visited on 11/19/2019)
(cit. on p. 25).

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-
Flow Integrity”. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security. CCS ’05. Alexandria, VA, USA, 2005,
p. 340 (cit. on pp. 16, 27, 51, 56).

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-
Flow Integrity Principles, Implementations, and Applications”. In: ACM
Transactions on Information and System Security. TISSEC 13.1 (2009),
4:1–4:40 (cit. on pp. 27, 56).

[4] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. “On the Power
of Simple Branch Prediction Analysis”. In: Proceedings of the 2nd ACM
Symposium on Information, Computer and Communications Security.
ASIACCS ’07. Singapore, Republic of Singapore, 2007, pp. 312–320 (cit.
on pp. 43, 45).

[5] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. “Baggy
Bounds Checking: An Ef Fi Cient and Backwards-Compatib Le Defense
against Out-of-Bounds Errors”. In: Proceedings of the 18th USENIX Secu-
rity Symposium. USENIX Security ’05 (2009), pp. 51–66 (cit. on p. 31).

[6] Lars Ole Andersen. “Program Analysis and Specialization for the C Pro-
gramming Language”. Ph.D. Dissertation. DIKU, University of Copen-
hagen, 1994 (cit. on p. 23).

[7] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca In-
vernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas,
and Yi Zhou. “Understanding the Mirai Botnet”. In: Proceedings of the
26th USENIX Security Symposium. USENIX Security ’17. Vancouver, BC,
USA, 2017, pp. 1093–1110 (cit. on p. 15).

[8] ARM. Architecture Reference Manual ARMv8. DDI 0487C.a. 2017 (cit. on
pp. 20, 32, 51, 52, 55).

[9] ARM. Armv8.5-A Memory Tagging Extension. Whitepaper. 2019 (cit. on
p. 17).

65

http://phrack.org/issues/56/5.html

Bibliography

[10] ARM Ltd. Procedure Call Standard for the ARM 64-Bit Architecture. ARM
IHI 0055B. 2013 (cit. on p. 25).

[11] Abhishek Arya and Cris Neckar. Fuzzing for Security — Chromium Blog.
2012. URL: https://blog.chromium.org/2012/04/fuzzing-for-security.html
(visited on 11/14/2019) (cit. on pp. 30, 59).

[12] Krste Asanović and David A. Patterson. Instruction Sets Should Be Free:
The Case for RISC-V. UCB/EECS-2014-146. EECS Department, Univer-
sity of California, Berkeley, 2014 (cit. on p. 15).

[13] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS Matrices
over Rings with Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions with Non-Involutory Central Rounds, and Search Heuristics for
Low-Latency S-Boxes”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 4–44 (cit. on p. 52).

[14] Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce.
“The Meaning of Memory Safety”. In: Proceedings of the International
Conference on Principles of Security and Trust. Ed. by Lujo Bauer and
Ralf Küsters. Thessaloniki, Greece, 2018, pp. 79–105 (cit. on p. 29).

[15] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp
Wendler. “Conditional Model Checking: A Technique to Pass Information
between Verifiers”. In: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering. FSE ’12.
Cary, NC, USA, 2012, 57:1–57:11 (cit. on p. 62).

[16] D. L. Bird and C. U. Munoz. “Automatic Generation of Random Self-
Checking Test Cases”. In: IBM Systems Journal 22.3 (1983), pp. 229–245
(cit. on pp. 39, 59).

[17] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. “A Static
Analyzer for Large Safety-Critical Software”. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. PLDI ’03. San Diego, CA, USA, 2003, pp. 196–207 (cit. on p. 60).

[18] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. “Jump-
Oriented Programming: A New Class of Code-Reuse Attack”. In: Proceed-
ings of the 6th ACM Symposium on Information, Computer and Com-
munications Security. ASIACCS ’11. Hong Kong, China, 2011, pp. 30–40
(cit. on p. 26).

[19] Erik Bosman and Herbert Bos. “Framing Signals — A Return to Portable
Shellcode”. In: Proceedings of the 2014 IEEE Symposium on Security and
Privacy. SP ’14. San Jose, CA, USA, 2014, pp. 243–258 (cit. on p. 26).

[20] Rodrigo Rubira Branco. PAX_REFCOUNT Documentation. 2015. URL:
https : / / forums . grsecurity . net / viewtopic . php ? f = 7 & t = 4173 (visited on
10/07/2019) (cit. on p. 38).

[21] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, and Ahmad-Reza Sadeghi. “DR.SGX: Harden-
ing SGX Enclaves against Cache Attacks with Data Location Randomiza-
tion”. In: arXiv (2019). arXiv: 1709.09917 [cs] (cit. on p. 44).

66

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://forums.grsecurity.net/viewtopic.php?f=7&t=4173
https://arxiv.org/abs/1709.09917

Bibliography

[22] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software Grand Exposure:
SGX Cache Attacks Are Practical”. In: Proceedings of the 11th USENIX
Workshop on Offensive Technologies. USENIX WOOT ’17. Vancouver, BC,
2017 (cit. on p. 44).

[23] Sergey Bratus, Michael Locasto, Meredith Patterson, Len Sassaman, and
Anna Shubina. “Exploit Programming: From Buffer Overflows to Weird
Machines and Theory of Computation”. In: USENIX ;login: 36.6 (2011)
(cit. on p. 62).

[24] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. “Telling Your Secrets without Page Faults: Stealthy Page
Table-Based Attacks on Enclaved Execution”. In: Proceedings of the 26th
USENIX Security Symposium. USENIX Security ’17. Vancouver, BC,
2017, pp. 1041–1056 (cit. on p. 45).

[25] N. Burow, X. Zhang, and M. Payer. “SoK: Shining Light on Shadow
Stacks”. In: Proceedings of the 2019 IEEE Symposium on Security and
Privacy. SP ’19. Los Alamitos, CA, USA, 2019, pp. 985–999 (cit. on pp. 17,
27, 57).

[26] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. “Control-Flow Integrity: Precision,
Security, and Performance”. In: ACM Computing Surveys 50.1 (2017) (cit.
on p. 56).

[27] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. “A Systematic Evaluation of Transient Execution Attacks and
Defenses”. In: Proceedings of the 28th USENIX Security Symposium.
USENIX Security ’19. Santa Clara, CA, USA, 2019, pp. 249–266 (cit. on
pp. 16, 47).

[28] Javier Martinez Canillas. Kbuild: The Linux Kernel Build System | Linux
Journal. 2012. URL: https://www.linuxjournal.com/content/kbuild-linux-

kernel-build-system (visited on 11/20/2019) (cit. on p. 34).

[29] Nicolas Carlini, Antonio Barresi, E T H Zürich, Mathias Payer, David
Wagner, Thomas R Gross, E T H Zürich, Nicolas Carlini, Antonio Bar-
resi, David Wagner, and Thomas R Gross. “Control-Flow Bending: On
the Effectiveness of Control-Flow Integrity”. In: Proceedings of the 24th
USENIX Security Symposium. USENIX Security ’15. Washington, DC,
USA, 2015, pp. 161–176 (cit. on pp. 27, 56, 62).

[30] Scott A. Carr and Mathias Payer. “DataShield: Configurable Data Con-
fidentiality and Integrity”. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ASIACCS ’17.
Abu Dhabi, United Arab Emirates, 2017, pp. 193–204 (cit. on p. 40).

[31] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-Oriented Pro-
gramming without Returns”. In: Proceedings of the 17th ACM Conference
on Computer and Communications Security. CCS ’10. Chicago, IL, USA,
2010, p. 559 (cit. on p. 26).

67

https://www.linuxjournal.com/content/kbuild-linux-kernel-build-system
https://www.linuxjournal.com/content/kbuild-linux-kernel-build-system

Bibliography

[32] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. “SgxPectre:
Stealing Intel Secrets from SGX Enclaves via Speculative Execution”.
In: Proceedings of the 2019 IEEE European Symposium on Security and
Privacy. EuroSP ’19. Stockholm, Sweden, 2019, pp. 142–157 (cit. on p. 48).

[33] Shuo Chen, Jun Xu, Emre C Sezer, Prachi Gauriar, and Ravishankar K
Iyer. “Non-Control-Data Attacks Are Realistic Threats”. In: Proceedings of
the 14th USENIX Security Symposium. USENIX Security ’05. Baltimore,
MD, USA, 2005, pp. 177–191 (cit. on pp. 28, 51).

[34] Clang team. AddressSanitizer — Clang 9 Documentation. 2019. URL:
https://releases.llvm.org/9.0.0/tools/clang/docs/AddressSanitizer.html

(visited on 11/14/2019) (cit. on p. 30).

[35] Clang team. Clang Command Line Argument Reference — Clang 9 Doc-
umentation. URL: https://releases.llvm.org/9.0.0/tools/clang/docs/

ClangCommandLineReference.html (visited on 11/14/2019) (cit. on pp. 25, 52,
60).

[36] Clang team. Clang Static Analyzer — Clang 9 Documentation. 2019. URL:
https://releases.llvm.org/9.0.0/tools/clang/docs/ClangStaticAnalyzer.html

(visited on 11/14/2019) (cit. on pp. 22, 60).

[37] Clang team. Control Flow Integrity — Clang 9 Documentation. 2019. URL:
https://releases.llvm.org/9.0.0/tools/clang/docs/ControlFlowIntegrity.

html (visited on 11/14/2019) (cit. on pp. 28, 59).

[38] Clang team. ShadowCallStack — Clang 9 Documentation. 2019. URL:
https://releases.llvm.org/9.0.0/tools/clang/docs/ShadowCallStack.html

(visited on 11/14/2019) (cit. on p. 28).

[39] George E. Collins. “A Method for Overlapping and Erasure of Lists”. In:
Communications of the ACM 3.12 (1960), pp. 655–657 (cit. on pp. 30, 34).

[40] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen,
Marco Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-
Reza Sadeghi. “Losing Control: On the Effectiveness of Control-Flow
Integrity under Stack Attacks”. In: Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security. CCS ’15. Denver,
CO, USA, 2015, pp. 952–963 (cit. on p. 27).

[41] Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Bar-
rett. “Pointer Analysis, Conditional Soundness, and Proving the Absence
of Errors”. In: Static Analysis. Ed. by María Alpuente and Germán Vidal.
Vol. 5079. Berlin, Heidelberg, 2008, pp. 62–77 (cit. on p. 62).

[42] Kees Cook. “Linux Kernel ASLR”. In: Linux Security Summit. New Or-
leans, LA, USA, 2013 (cit. on pp. 26, 34).

[43] Kees Cook. Security Things in Linux v4.11 — Codeblog. 2017. URL: https:
//outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/

(visited on 11/20/2019) (cit. on p. 19).

[44] Jonathan Corbet. Kernel Building with GCC Plugins [LWN.Net]. 2016.
URL: https://lwn.net/Articles/691102/ (visited on 11/20/2019) (cit. on
pp. 34, 39).

[45] Victor Costan and Srinivas Devadas. Intel SGX Explained. 2016/086. 2016
(cit. on pp. 40, 43).

68

https://releases.llvm.org/9.0.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ClangStaticAnalyzer.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/9.0.0/tools/clang/docs/ShadowCallStack.html
https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/
https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/
https://lwn.net/Articles/691102/

Bibliography

[46] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle,
and Erik Walthinsen. “Protecting Systems from Stack Smashing Attacks
with StackGuard”. In: Linux Expo. 1999 (cit. on p. 25).

[47] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks”. In: Proceedings of the 7th USENIX Security
Symposium. Vol. 98. USENIX Security ’98. San Antonio, TX, USA, 1998,
pp. 63–78 (cit. on pp. 16, 25, 51, 53, 54).

[48] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. “The Perfor-
mance Cost of Shadow Stacks and Stack Canaries”. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security. ASIA CCS ’15. Singapore, Republic of Singapore, 2015, pp. 555–
566 (cit. on p. 27).

[49] Lucas Vincenzo Davi. “Code-Reuse Attacks and Defenses”. Ph.D. Dissera-
tion. Technische Universität Darmstadt, 2015 (cit. on p. 26).

[50] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi,
Patrick Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. “HAFIX:
Hardware-Assisted Flow Integrity Extension”. In: Proceedings of the 52nd
ACM/IEEE Annual Design Automation Conference. DAC ’15. San Fran-
cisco, CA, USA, 2015 (cit. on p. 31).

[51] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose.
“Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-
Flow Integrity Protection”. In: Proceedings of the 23rd USENIX Security
Symposium. USENIX Security ’14. San Diego, CA, USA, 2014, pp. 401–
416 (cit. on pp. 27, 56, 62).

[52] Brooks Davis, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore
Markettos, J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napier-
ala, Robert M. Norton, Michael Roe, Peter Sewell, Robert N. M. Watson,
Stacey Son, Jonathan Woodruff, Alexander Richardson, Peter G. Neu-
mann, Simon W. Moore, John Baldwin, David Chisnall, James Clarke,
and Nathaniel Wesley Filardo. “CheriABI: Enforcing Valid Pointer Prove-
nance and Minimizing Pointer Privilege in the POSIX C Run-Time En-
vironment”. In: Proceedings of the 24th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
ASPLOS ’19. Providence, RI, USA, 2019, pp. 379–393 (cit. on p. 31).

[53] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas
Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. “LO-FAT:
Low-Overhead Control Flow ATtestation in Hardware”. In: Proceedings
of the 54th ACM/IEEE Annual Design Automation Conference. DAC ’17.
Austin, TX, USA, 2017 (cit. on p. 57).

[54] Joe Devietti, Colin Blundell, M.M.K. Martin, and Steve Zdancewic. “Hard-
Bound: Architectural Support for Spatial Safety of the C Programming
Language”. In: Proceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
ASPLOS ’08. Seatle, WA, USA, 2008, pp. 103–114 (cit. on pp. 17, 31).

69

Bibliography

[55] Will Dietz, Peng Li, John Regehr, and Vikram Adve. “Understanding In-
teger Overflow in C/C++”. In: ACM Transactions on Software Engineering
and Methodology. TOSEM 25.1 (2015), 2:1–2:29 (cit. on pp. 35, 38).

[56] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and
Wenke Lee. “Efficient Protection of Path-Sensitive Control Security”. In:
Proceedings of the 26th USENIX Security Symposium. USENIX Security
’17. Vancouver, BC, 2017, pp. 131–148 (cit. on p. 27).

[57] Stephen Dolan. “Mov Is Turing-Complete”. In: Computer Laboratory,
University of Cambridge (2013) (cit. on p. 47).

[58] Nurit Dor, Michael Rodeh, and Mooly Sagiv. “CSSV: Towards a Realistic
Tool for Statically Detecting All Buffer Overflows in C”. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’03. San Diego, CA, USA, 2003, pp. 155–167 (cit. on
p. 60).

[59] Thomas F. Dullien. “Weird Machines, Exploitability, and Provable Unex-
ploitability”. In: IEEE Transactions on Emerging Topics in Computing
(2018) (cit. on p. 62).

[60] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi. “Checked C: Making
C Safe by Extension”. In: Proceedings of the 2018 IEEE Cybersecurity
Development. SecDev ’18. Cambridge, MA, USA, 2018, pp. 53–60 (cit. on
pp. 17, 30).

[61] Hiroaki Etoh and Kunikazu Yoda. Protecting from Stack-Smashing At-
tacks. IBM Research Division, Tokyo Research Laboratory, 2000 (cit. on
p. 25).

[62] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. “Jump
over ASLR: Attacking Branch Predictors to Bypass ASLR”. In: The 49th
Annual IEEE/ACM International Symposium on Microarchitecture. MI-
CRO ’16. Taipei, Tawian, 2016, 40:1–40:13 (cit. on pp. 26, 45, 47).

[63] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. “BranchScope: A New Side-Channel Attack on Directional Branch
Predictor”. In: Proceedings of the 23rd International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
ASPLOS ’18. Williamsburg, VA, USA, 2018, pp. 693–707 (cit. on p. 45).

[64] Justin E Forrester and Barton P Miller. “An Empirical Study of the
Robustness of Windows NT Applications Using Random Testing”. In:
Proceedings of the 4th USENIX Windows System Symposium. Vol. 4.
USENIX WinSys ’00. Seattle. Seatle, WA, USA, 2000, pp. 59–68 (cit. on
pp. 39, 59).

[65] Jacob Fustos, Farzad Farshchi, and Heechul Yun. “SpectreGuard: An
Efficient Data-Centric Defense Mechanism against Spectre Attacks”. In:
Proceedings of the 56th ACM/IEEE Annual Design Automation Confer-
ence. DAC ’19. Las Vegas, NV, USA, 2019 (cit. on p. 48).

[66] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David
Vitek. “Buffer Overrun Detection Using Linear Programming and Static
Analysis”. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security. CCS ’03. Washington DC, USA, 2003, pp. 345–
354 (cit. on p. 60).

70

Bibliography

[67] GCC Wiki. Intel® Memory Protection Extensions (Intel® MPX) Support
in the GCC Compiler. 2018. URL: https://gcc.gnu.org/wiki/Intel%20MPX%
20support%20in%20the%20GCC%20compiler (visited on 10/07/2019) (cit. on pp. 36,
40).

[68] Xinyang Ge, Weidong Cui, and Trent Jaeger. “GRIFFIN: Guarding Control
Flows Using Intel Processor Trace”. In: Proceedings of the 22nd Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’17. Xi’an, China, 2017, pp. 585–598
(cit. on p. 27).

[69] Ronald Gil, Hamed Okhravi, and Howard Shrobe. “There’s a Hole in
the Bottom of the C: On the Effectiveness of Allocation Protection”. In:
Proceedings of the 2018 IEEE Cybersecurity Development. SecDev ’18.
Cambridge, MA, USA, 2018, pp. 102–109 (cit. on pp. 30, 36, 40).

[70] GNU. GCC 9.2 Manual. 2019. URL: https://gcc.gnu.org/onlinedocs/gcc-
9.2.0/gcc/ (visited on 11/10/2019) (cit. on pp. 25, 52).

[71] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. “Automated
Whitebox Fuzz Testing”. In: Proceedings of Hte 2008 Network and Dis-
tributed System Security Symposium. Vol. 8. NDSS ’08. San Diego, CA,
USA, 2008, pp. 151–166 (cit. on p. 59).

[72] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. “Out of Control:
Overcoming Control-Flow Integrity”. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy. SP ’14. San Jose, CA, USA, 2014,
pp. 575–589 (cit. on pp. 27, 56, 62).

[73] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuf-
frida. “ASLR on the Line: Practical Cache Attacks on the MMU”. In:
(March 2017) (cit. on p. 26).

[74] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine
Maurice, and Stefan Mangard. “KASLR Is Dead: Long Live KASLR”. In:
Engineering Secure Software and Systems. Ed. by Eric Bodden, Mathias
Payer, and Elias Athanasopoulos. Bonn, Germany, 2017, pp. 161–176
(cit. on p. 40).

[75] Reed Hastings and Bob Joyce. “Purify: Errors of Memory Leaks and
Access Fast Detection”. In: Winter USENIX Conference. 1992, pp. 125–136
(cit. on p. 30).

[76] William H. Hawkins, Jason D. Hiser, and Jack W. Davidson. “Dynamic
Canary Randomization for Improved Software Security”. In: Proceedings
of the 11th Annual Cyber and Information Security Research Conference.
CISRC ’16. Oak Ridge, TN, USA, 2016, 9:1–9:7 (cit. on pp. 25, 54).

[77] Michael Hicks. What Is Memory Safety? 2014. URL: http : / / www . pl -

enthusiast.net/2014/07/21/memory-safety/ (visited on 09/24/2019) (cit. on
p. 29).

[78] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. “Enforcing Unique Code
Target Property for Control-Flow Integrity”. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
CCS ’18. Toronto, Canada, 2018, pp. 1470–1486 (cit. on p. 28).

71

https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Bibliography

[79] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. “Data-Oriented Programming: On the Ex-
pressiveness of Non-Control Data Attacks”. In: Proceedings of the 2016
IEEE Symposium on Security and Privacy. SP ’16. San Jose, CA, USA,
2016, pp. 969–986 (cit. on pp. 28, 51, 62).

[80] Ralf Hund, Carsten Willems, Thorsten Holz, and Ruhr-university Bochum.
“Practical Timing Side Channel Attacks Against Kernel Space ASLR”. In:
Proceedings of the 2013 IEEE Symposium on Security and Privacy. SP
’13. San Francisco, CA, USA, 2013 (cit. on p. 26).

[81] IBM. IBM Cloud Data Shield. 2019. URL: https://www.ibm.com/cloud/data-
shield (visited on 10/11/2019) (cit. on p. 43).

[82] Intel. Control-Flow Enforcement Technology Preview. 2016 (cit. on pp. 17,
31, 53).

[83] Intel. Intel 64 and Ia-32 Architectures Software Developer’s Manual Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. 2019. URL: https:
//software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-

combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4 (visited on 11/08/2019)
(cit. on pp. 28, 45).

[84] Intel. Intel® Analysis of Speculative Execution Side Channels. 336983-001.
2018 (cit. on p. 48).

[85] ISO/IEC. Information Technology - Programming Languages - C. INCIT-
S/ISO/IEC 9899-2012. 2012 (cit. on p. 35).

[86] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. “Cyclone: A Safe Dialect of C”. In: Proceedings
of the 2002 USENIX Annual Technical Conference. USENIX ATC ’02.
Monterey, CA, USA, 2002, pp. 275–288 (cit. on p. 30).

[87] Ken Johnson and Matt Miller. “Exploit Mitigation Improvements in Win-
dows 8”. In: Black hat USA (2012) (cit. on p. 26).

[88] Simon Johnson. Intel® SGX and Side-Channels. 2018. URL: https://

software.intel.com/en-us/articles/intel-sgx-and-side-channels (visited on
11/20/2019) (cit. on p. 43).

[89] Richard W M Jones and Paul H J Kelly. “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs.” In: Proceedings of the
3rd International Workshop on Automatic Debugging. AADEBUG ’97 1.1
(1997), pp. 13–26 (cit. on p. 31).

[90] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
“RustBelt: Securing the Foundations of the Rust Programming Language”.
In: Proceedings of the ACM on Programming Languages. POPL ’17 2
(POPL 2017), 66:1–66:34 (cit. on p. 61).

[91] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh. “SafeSpec: Banishing the Spectre of a Meltdown
with Leakage-Free Speculation”. In: Proceedings of the 56th ACM/IEEE
Annual Design Automation Conference. DAC ’19. Las Vegas, NV, USA,
2019 (cit. on p. 48).

72

https://www.ibm.com/cloud/data-shield
https://www.ibm.com/cloud/data-shield
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

Bibliography

[92] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng
Ning. “Address Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software”. In: Proceedings of the 2006 22nd
Annual Computer Security Applications Conference. ACSAC ’06. Miami
Beach, FL, USA, 2006, pp. 339–348 (cit. on p. 26).

[93] Steve Klabnik and Carol Nichols. “Foreign Function Interface”. In: The
Rust Programming Language. 2019 (cit. on p. 61).

[94] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. “Spectre
Attacks: Exploiting Speculative Execution”. In: Proceedings of the 2019
IEEE Symposium on Security and Privacy. SP ’19. Los Alamitos, CA,
USA, 2019 (cit. on p. 47).

[95] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Anal-
ysis”. In: Advances in Cryptology. Ed. by Michael Wiener. CRYPTO ’99.
Berlin, Heidelberg, 1999, pp. 388–397 (cit. on p. 44).

[96] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athana-
sopoulos. “No Need to Hide: Protecting Safe Regions on Commodity Hard-
ware”. In: Proceedings of the 12th European Conference on Computer
Systems. EuroSys ’17. Belgrade, Serbia, 2017, pp. 437–452 (cit. on pp. 40,
61, 62).

[97] Tim Kornau. “Return Oriented Programming for the ARM Architecture”.
Diplomarbeit. Bochum, Germany: Ruhr-Universität Bochum, 2009. URL:
http://bxi.es/Reversing-Exploiting/ROP/Return%20Oriented%20Programming%

20for%20ARM.pdf (cit. on pp. 26, 52).

[98] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. “Spectre Returns! Speculation Attacks Using the
Return Stack Buffer”. In: Proceedings of the 12th USENIX Workshop on
Offensive Technologies. USENIX WOOT ’18. Baltimore, MD, USA, 2018
(cit. on p. 48).

[99] G Kroah-Hartman. “Kobjects and Krefs”. In: Proceedings of the Linux
Symposium. Ottawa, ON, Canada, 2004, pp. 297–302 (cit. on p. 35).

[100] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. “SGXBOUNDS:
Memory Safety for Shielded Execution”. In: Proceedings of the 12th Eu-
ropean Conference on Computer Systems. EuroSys ’17. Belgrade, Serbia,
2017, pp. 205–221 (cit. on pp. 40, 41).

[101] Volodymyr Kuznetsov, László Szekeres, and Mathias Payer. “Code-Pointer
Integrity”. In: Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation. USENIX OSDI ’14. Broomfield, CO,
USA, 2014, pp. 147–163 (cit. on pp. 28, 51).

[102] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
and Dawn Song. “Poster: Getting the Point (Er): On the Feasibility of
Attacks on Code-Pointer Integrity”. In: IEEE Symposium on Security and
Privacy. 2015 (cit. on p. 28).

73

http://bxi.es/Reversing-Exploiting/ROP/Return%20Oriented%20Programming%20for%20ARM.pdf
http://bxi.es/Reversing-Exploiting/ROP/Return%20Oriented%20Programming%20for%20ARM.pdf

Bibliography

[103] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Her-
mann Härtig. “Sandcrust: Automatic Sandboxing of Unsafe Components
in Rust”. In: Proceedings of the 9th Workshop on Programming Languages
and Operating Systems. PLOS’17. Shanghai, China, 2017, pp. 51–57 (cit.
on p. 61).

[104] William Landi. “Undecidability of Static Analysis”. In: ACM Letters on
Programming Languages and Systems. LOPLAS 1.4 (1992), pp. 323–337
(cit. on p. 60).

[105] Michael Larabel. The New Features Of LLVM 9.0 & Clang 9.0 - Includes
Building The Linux X86_64 Kernel - Phoronix. 2019. URL: https://www.
phoronix.com/scan.php?page=news_item&px=LLVM- 9.0- Clang- 9.0- Features

(visited on 11/20/2019) (cit. on p. 34).

[106] Chris Lattner. “LLVM”. In: The Architecture of Open Source Applications.
Ed. by Amy Brown and Greg Wilson. 2014 (cit. on p. 22).

[107] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. “Inferring Fine-Grained Control Flow inside SGX
Enclaves with Branch Shadowing”. In: Proceedings of the 26th USENIX
Security Symposium. USENIX Security ’17. Vancouver, BC, 2017, pp. 557–
574 (cit. on pp. 45–47).

[108] Elias (Aleph One) Levy. “Smashing the Stack for Fun and Profit”. In:
Phrack 7.19 (1996), p. 32 (cit. on pp. 16, 24).

[109] Linux_5.0 — Linux Kernel Newbies. 2019. URL: https://kernelnewbies.org/
Linux_5.0 (visited on 11/14/2019) (cit. on p. 52).

[110] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. “Meltdown: Reading Kernel
Memory from User Space”. In: Proceedings of the 27th USENIX Security
Symposium. USENIX Security ’19. Baltimore, MD, USA, 2018, pp. 973–
990 (cit. on p. 47).

[111] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haib-
ing Guan. “Transparent and Efficient CFI Enforcement with Intel Proces-
sor Prace”. In: Proceedings of the 2017 IEEE International Symposium on
High Performance Computer Architecture. HPCA ’17. 2017, pp. 529–540
(cit. on p. 27).

[112] Kangjie Lu, Stefan Nürnberger, Michael Backes, and Wenke Lee. “How
to Make ASLR Win the Clone Wars: Runtime Re-Randomization”. In:
Proceedings of Hte 2016 Network and Distributed System Security Sympo-
sium. NDSS ’16. San Diego, CA, USA, 2016 (cit. on pp. 27, 60).

[113] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
“CCFI: Cryptographically Enforced Control Flow Integrity”. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’15. Denver, CO, USA, 2015, pp. 941–951 (cit. on
pp. 17, 28, 57).

[114] Nicholas D Matsakis and Felix S Klock II. “The Rust Language”. In:
Proceedings of the 2014 ACM SIGAda Annual Conference on High In-
tegrity Language Technology. Vol. 34. HILT ’14. Portland, OR, USA, 2014,
pp. 103–104 (cit. on pp. 16, 17, 22, 30, 60).

74

https://www.phoronix.com/scan.php?page=news_item&px=LLVM-9.0-Clang-9.0-Features
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-9.0-Clang-9.0-Features
https://kernelnewbies.org/Linux_5.0
https://kernelnewbies.org/Linux_5.0

Bibliography

[115] Paul E Mckenney. Overview of Linux-Kernel Reference Counting. N2167=07-
0027. IBM Beaverton: Linux Technology Center, 2007 (cit. on p. 35).

[116] Microsoft. A Detailed Description of the Data Execution Prevention (DEP)
Feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition
2005, and Windows Server 2003. 2006. URL: https://support.microsoft.
com/en- us/help/875352/a- detailed- description- of- the- data- execution-

prevention-dep-feature-in (visited on 09/05/2019) (cit. on pp. 16, 25, 51).

[117] Microsoft. Azure Confidential Computing. 2019. URL: https : / / azure .

microsoft.com/en-us/solutions/confidential-compute/ (visited on 10/11/2019)
(cit. on p. 43).

[118] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “CacheZoom:
How SGX Amplifies the Power of Cache Attacks”. In: Cryptographic
Hardware and Embedded Systems. Ed. by Wieland Fischer and Nao-
fumi Homma. CHES ’17. Taipei, Tawian, 2017, pp. 69–90 (cit. on p. 44).

[119] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and
Michael Franz. “Opaque Control-Flow Integrity”. In: Proceedings of the
2015 Network and Distributed System Security Symposium. NDSS ’15.
San Diego, CA, USA, 2015 (cit. on p. 40).

[120] João Moreira, Sandro Rigo, Michalis Polychronakis, and Vasileios P Ke-
merlis. “DROP THE ROP Fine-Grained Control-Flow Integrity for the
Linux Kernel”. In: Black Hat Asia (2017) (cit. on p. 40).

[121] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. “SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C”. In: Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’09. Dublin,
Ireland, 2009, pp. 245–258 (cit. on pp. 17, 31).

[122] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and
Westley Weimer. “CCured: Type-Safe Retrofitting of Legacy Software”. In:
ACM Transactions on Programming Languages and Systems 27.3 (2005),
pp. 477–526 (cit. on p. 30).

[123] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan,
and A. Sadeghi. “HardScope: Hardening Embedded Systems against Data-
Oriented Attacks”. In: Proceedings of the 56th ACM/IEEE Annual Design
Automation Conference. DAC ’19. Las Vegas, NV, USA, 2019 (cit. on pp. 17,
57).

[124] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. “CFI
CaRE: Hardware-Supported Call and Return Enforcement for Commer-
cial Microcontrollers”. In: Research in Attacks, Intrusions, and Defenses.
Ed. by Marc Dacier, Michael Bailey, Michalis Polychronakis, and Manos
Antonakakis. Lecture Notes in Computer Science. 2017, pp. 259–284 (cit.
on p. 31).

[125] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. “Intel MPX Explained: A Cross-Layer Analysis of the
Intel MPX System Stack”. In: Proceedings of the ACM on Measurement
and Analysis of Computing Systems 2.2 (2019), 28:1–28:30 (cit. on pp. 17,
31, 36).

75

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/

Bibliography

[126] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. “Varys: Protecting SGX Enclaves from Practical Side-
Channel Attacks”. In: Proceedings of the 2018 USENIX Annual Technical
Conference. USENIX ATC ’18. Boston, MA, USA, 2018, pp. 227–240 (cit.
on p. 44).

[127] Harish Patil and Charles Fischer. “Low-Cost, Concurrent Checking of
Pointer and Array Accesses in C Programs”. In: Software: Practice and
Experience. SPE 27.1 (1997), pp. 87–110 (cit. on p. 31).

[128] PaX Team. PaX Address Space Layout Randomization (ASLR). 2003. URL:
https://pax.grsecurity.net/docs/aslr.txt (visited on 05/10/2018) (cit. on
p. 26).

[129] PaX Team. PaX PAGEEXEC Documentation. 2006. URL: https://pax.

grsecurity.net/docs/pageexec.txt (visited on 11/19/2019) (cit. on p. 25).

[130] Alexander (Solar Designer) Peslyak. Getting around Non-Executable Stack
(and Fix). 1997. URL: https://seclists.org/bugtraq/1997/Aug/63 (visited on
09/05/2019) (cit. on pp. 16, 25, 51).

[131] Theofilos Petsios, Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos D. Keromytis. “DynaGuard: Armoring Canary-Based Protections
against Brute-Force Attacks”. In: Proceedings of the 31st AnnualCcom-
puter Security Applications Conference. ACSAC 2015. Los Angeles, CA,
USA, 2015, pp. 351–360 (cit. on pp. 25, 54).

[132] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Poly-
chronakis, and Vasileios P. Kemerlis. “kRˆX: Comprehensive Kernel Pro-
tection against Just-in-Time Code Reuse”. In: Proceedings of the 12th
European Conference on Computer Systems. EuroSys ’17. Belgrade, Ser-
bia, 2017, pp. 420–436 (cit. on p. 40).

[133] Qualcomm. Pointer Authentication on ARMv8.3: Design and Analysis of
the New Software Security Instructions. 2017 (cit. on pp. 17, 51, 52).

[134] Ramu Ramakesavan, Dan Zimmerman, Pavithra Singaravelu, George
Kuan, Brian Vajda, Scott Gibbons, and Gautham Beeraka. Intel® Memory
Protection Extensions Enabling Guide (Rev 1.01). 2016 (cit. on p. 36).

[135] Gerardo Richarte et al. “Four Different Tricks to Bypass Stackshield and
Stackguard Protection”. In: World Wide Web 1 (2002) (cit. on p. 25).

[136] Grigore Roşu, Wolfram Schulte, and Traian Florin ŞerbănuŢă. “Runtime
Verification of C Memory Safety”. In: Runtime Verification. Ed. by Saddek
Bensalem and Doron A. Peled. Berlin, Heidelberg, 2009, pp. 132–151
(cit. on pp. 29, 60).

[137] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin
Steegmanns, Moritz Contag, and Thorsten Holz. “Evaluating the Effective-
ness of Current Anti-Rop Defenses”. In: Research in Attacks, Intrusions
and Defenses. Ed. by Angelos Stavrou, Herbert Bos, and Georgios Por-
tokalidis. Rodney Bay, St. Lucia, France, 2014, pp. 88–108 (cit. on pp. 27,
56, 62).

76

https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
https://seclists.org/bugtraq/1997/Aug/63

Bibliography

[138] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik
Shin, Dongsu Han, and Taesoo Kim. “SGX-Shield: Enabling Address
Space Layout Randomization for SGX Programs”. In: Proceedings of the
2017 Network and Distributed System Security Symposium. NDSS ’17.
San Diego, CA, USA, 2017 (cit. on p. 47).

[139] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. “AddressSanitizer: A Fast Address Sanity Checker”. In: Presented
as Part of the 2012 USENIX Annual Technical Conference. USENIX ATC
’12. Boston, MA, USA, 2012, pp. 309–318 (cit. on p. 30).

[140] Kostya Serebryany. “ARM Memory Tagging Extension and How It Im-
proves C/C++ Memory Safety”. In: USENIX ;login: 44.2 (2019), p. 5 (cit. on
p. 32).

[141] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86)”. In: Proceedings of the
14th ACM Conference on Computer and Communications Security. Vol. 22.
CCS ’07. Alexandria, VA, USA, 2007, pp. 552–561 (cit. on pp. 24, 26, 51,
62).

[142] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. “On the Effectiveness of Address-Space Randomization”.
In: Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security. CCS ’04. Washington DC, USA, 2004, pp. 298–307
(cit. on p. 16).

[143] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. “T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs”. In:
Proceedings of the 2017 Network and Distributed System Security Sympo-
sium. NDSS ’17. San Diego, CA, USA, 2017 (cit. on pp. 44, 45).

[144] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Sax-
ena. “Preventing Page Faults from Telling Your Secrets”. In: Proceedings
of the 11th ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’16. Xi’an, China, 2016, pp. 317–328 (cit. on p. 45).

[145] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.
Sadeghi. “Just-in-Time Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization”. In: Proceedings of the 2013 IEEE
Symposium on Security and Privacy. SP ’13. San Francisco, CA, USA,
2013, pp. 574–588 (cit. on p. 27).

[146] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek.
“HDFI: Hardware-Assisted Data-Flow Isolation”. In: Proceedings of the
2016 IEEE Symposium on Security and Privacy. SP ’16. San Jose, CA,
USA, 2016 (cit. on p. 57).

[147] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz. “SoK: Sanitizing for Security”. In: Proceedings of the 2019 IEEE
Symposium on Security and Privacy. SP ’19. Los Alamitos, CA, USA, 2019,
pp. 1275–1295 (cit. on p. 59).

[148] Wei Song, Alex Bradbury, and Robert Mullins. “Towards General Purpose
Tagged Memory”. In: Proceedings of the 2nd RISC-V Workshop. Berkeley,
CA, USA, 2015 (cit. on p. 57).

77

Bibliography

[149] Eugene H. Spafford. “The Internet Worm Program: An Analysis”. In: ACM
SIGCOMM Computer Communication Review. SIGCOMM 19.1 (1989),
pp. 17–57 (cit. on pp. 16, 24).

[150] Bjarne Steensgaard. “Points-to Analysis in Almost Linear Time”. In: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’96. St. Petersburg Beach, FL, USA,
1996, pp. 32–41 (cit. on p. 23).

[151] László Szekeres, Mathias Payer, and Tao Wei. “SoK: Eternal War in
Memory”. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy. SP ’13. San Francisco, CA, USA, 2013, pp. 48–62 (cit. on pp. 16,
29).

[152] the Kernel development community. Coccinelle. 2019. URL: https://www.
kernel.org/doc/html/v4.15/dev-tools/coccinelle.html (visited on 10/08/2019)
(cit. on p. 38).

[153] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. “Enforcing Forward-Edge
Control-Flow Integrity in GCC & LLVM”. In: Proceedings of the 23rd
USENIX Security Symposium. USENIX Security ’14. San Diego, CA,
USA, 2014, pp. 941–955 (cit. on pp. 27, 28).

[154] Stylianos Tsampas et al. “Towards Automatic Compartmentalization of
C Programs on Capability Machines”. In: Workshop on Foundations of
Computer Security 2017. 2017 (cit. on pp. 61, 62).

[155] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. “ERIM: Secure, Efficient
in-Process Isolation with Protection Keys (MPK)”. In: Proceedings of the
28th USENIX Security Symposium. USENIX Security ’19. Santa Clara,
CA, USA, 2019, pp. 1221–1238 (cit. on pp. 31, 61, 62).

[156] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, Raoul
Strackx, and Ku Leuven. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient out-of-Order Execution”. In: Proceedings of
the 27th USENIX Security Symposium. USENIX Security ’18. Baltimore,
MD, USA, 2018, pp. 991–1008 (cit. on p. 48).

[157] Jo Van Bulck, Frank Piessens, Raoul Strackx, Jo Van Bulck, K U Leu-
ven, Frank Piessens, K U Leuven, Raoul Strackx, Jo Van Bulck, Frank
Piessens, and Raoul Strackx. “SGX-Step: A Practical Attack Framework
for Precise Enclave Execution Control”. In: Proceedings of the 2Nd Work-
shop on System Software for Trusted Execution. SysTEX’17. Shanghai,
China, 2017, 4:1–4:6 (cit. on pp. 46, 47).

[158] J. Vanegue. “The Weird Machines in Proof-Carrying Code”. In: Proceedings
of the 2014 IEEE Security and Privacy Workshops. SPW ’14. 2014, pp. 209–
213 (cit. on p. 62).

[159] Wei Wang, Clark Barrett, and Thomas Wies. “Partitioned Memory Models
for Program Analysis”. In: Verification, Model Checking, and Abstract In-
terpretation. Ed. by Ahmed Bouajjani and David Monniaux. Paris, France,
2017, pp. 539–558 (cit. on p. 62).

78

https://www.kernel.org/doc/html/v4.15/dev-tools/coccinelle.html
https://www.kernel.org/doc/html/v4.15/dev-tools/coccinelle.html

Bibliography

[160] Zhilong Wang, Xuhua Ding, Chengbin Pang, Jian Guo, Jun Zhu, and Bing
Mao. “To Detect Stack Buffer Overflow with Polymorphic Canaries”. In:
Proceedings of the 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. DNS ’18. Luxembourg City, 2018,
pp. 243–254 (cit. on pp. 25, 54).

[161] David Williams-King, Graham Gobieski, Kent Williams-King, James P.
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis,
Junfeng Yang, and William Aiello. “Shuffler: Fast and Deployable Con-
tinuous Code Re-Randomization”. In: Proceedings of the 12th USENIX
Symposium on Pperating Systems Design and Implementation. USENIX
OSDI ’16. Savannah, GA, USA, 2016, pp. 367–382 (cit. on p. 27).

[162] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B.
Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. “The CHERI
Capability Model: Revisiting RISC in an Age of Risk”. In: Proceedings of
the ACM/IEEE 41st International Symposium on Computer Architecture.
ISCA ’14. 2014, pp. 457–468 (cit. on pp. 17, 31).

[163] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. “Transparent
Runtime Randomization for Security”. In: Proceedings of the IEEE Sym-
posium on Reliable Distributed Systems. 2003, pp. 260–269 (cit. on p. 26).

[164] Wei Xu, Daniel C. DuVarney, and R. Sekar. “An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs”. In:
Proceedings of the 12th ACM SIGSOFT 12th International Symposium
on Foundations of Software Engineering. SIGSOFT ’04/FSE-12. Newport
Beach, CA, USA, 2004, pp. 117–126 (cit. on p. 31).

[165] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen, and
Zhiqiang Lin. “CONFIRM: Evaluating Compatibility and Relevance of
Control-Flow Integrity Protections for Modern Software”. In: Proceedings
of the 28th USENIX Security Symposium. USENIX Security ’19. Santa
Clara, CA, USA, 2019, pp. 1805–1821 (cit. on pp. 56, 59).

[166] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems”.
In: Proceedings of the 2015 IEEE Symposium on Security and Privacy. SP
’14. San Jose, CA, USA, 2015, pp. 640–656 (cit. on p. 45).

[167] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the 23rd
USENIX Security Symposium. USENIX Security ’14. San Diego, CA, USA,
2014, pp. 719–732 (cit. on pp. 16, 21, 44, 48).

[168] Yves Younan, Wouter Joosen, Frank Piessens, and Report Cw. Code
Injection in C and C++ : A Survey of Vulnerabilities and Countermeasures.
CW 386. 2004, p. 82 (cit. on pp. 29, 30, 35, 51).

[169] Mohamed A. El-Zawawy. “Novel Designs for Memory Checkers Using Se-
mantics and Digital Sequential Circuits”. In: Computational Science and
Its Applications. Ed. by Osvaldo Gervasi, Beniamino Murgante, Sanjay
Misra, Marina L. Gavrilova, Ana Maria Alves Coutinho Rocha, Carmelo
Torre, David Taniar, and Bernady O. Apduhan. ICCSA ’15. Salvador,
Bahia, Brazil, 2015, pp. 597–611 (cit. on pp. 29, 60).

79

Bibliography

[170] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. “ARMlock: Hardware-
Based Fault Isolation for ARM”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’14. Scotts-
dale, Arizona, USA, 2014, pp. 558–569 (cit. on p. 62).

[171] Peter Zijlstra. Re: [Tip:Locking/Core] Refcount_t: Introduce a Special
Purpose Refcount Type. 2017. URL: https://patchwork.kernel.org/patch/

9569859/ (visited on 11/06/2019) (cit. on p. 38).

80

https://patchwork.kernel.org/patch/9569859/
https://patchwork.kernel.org/patch/9569859/

Errata

Publication III

Pointer Authentication instruction compatibilities incorrectly listed in
Appendix C. Correct table is in Publication V.

81

Publication I

Elena Reshetova, Hans Liljestrand, Andrew Paverd, N. Asokan. Towards
Linux Kernel Memory Safety. Software: Practice and Experience, Decem-
ber 2018.

© 2018 John Wiley & Sons, Ltd.
Reprinted with permission.

83

Received: 3 April 2018 Revised: 17 July 2018 Accepted: 9 August 2018

DOI: 10.1002/spe.2638

R E S E A R C H A R T I C L E

Toward Linux kernel memory safety

Elena Reshetova1 Hans Liljestrand2 Andrew Paverd2 N. Asokan2

1Intel OTC, Espoo, Finland
2Aalto University, Espoo, Finland

Correspondence
Elena Reshetova, Intel OTC, 02160 Espoo,
Finland.
Email: elena.reshetova@intel.com

Funding information
Intel Collaborative Research Institute for
Secure Computing at Aalto University;
Cloud Security Services (CloSer) project,
funded by Tekes/Business Finland,
Grant/Award Number: 3881/31/2016

Summary
The security of billions of devices worldwide depends on the security and
robustness of the mainline Linux kernel. However, the increasing number of
kernel-specific vulnerabilities, especially memory safety vulnerabilities, shows
that the kernel is a popular and practically exploitable target. Two major causes
of memory safety vulnerabilities are reference counter overflows (temporal
memory errors) and lack of pointer bounds checking (spatial memory errors).
To succeed in practice, security mechanisms for critical systems like the Linux
kernel must also consider performance and deployability as critical design
objectives. We present and systematically analyze two such mechanisms for
improving memory safety in the Linux kernel, ie, (1) an overflow-resistant refer-
ence counter data structure designed to securely accommodate typical reference
counter usage in kernel source code and (2) runtime pointer bounds checking
using Intel memory protection extension in the kernel. We have implemented
both mechanisms and we analyze their security, performance, and deployabil-
ity. We also reflect on our experience of engaging with Linux kernel developers
and successfully integrating the new reference counter data structure into the
mainline Linux kernel.

KEYWORDS

Linux kernel, Linux kernel development process, memory safety

1 INTRODUCTION

The Linux kernel forms the foundation of billions of different devices, ranging from servers and desktops to smartphones
and embedded devices. There are many solutions for strengthening Linux application security, including access con-
trol frameworks (SELinux,1 AppArmor2), integrity protection systems (integrity measurement architecture/earned value
management,3 dm-verity4), encryption, key management, and auditing. However, these are all rendered ineffective if an
attacker gains control of the kernel. Recent trends in common vulnerabilities and exposures (CVEs) indicate a renewed
interest in kernel vulnerabilities.5 On average, it takes 5 years for a kernel bug to be found and fixed,6 and even when fixed,
security updates might not be deployed to all vulnerable devices. Therefore, we cannot rely solely on retroactive bug fixes,
but require proactive measures to harden the kernel against potential vulnerabilities. This is the goal of the Kernel Self

Softw Pract Exper. 2018;48:2237–2256. wileyonlinelibrary.com/journal/spe © 2018 John Wiley & Sons, Ltd. 2237

2238 RESHETOVA ET AL.

Protection Project,7 a large community of volunteers working on the mainline Linux kernel. In this paper, we describe our
contributions, as part of the Kernel Self Protection Project, to the development of two kernel memory safety mechanisms.

Depending on their severity, memory errors can allow an attacker to read, write, or execute memory, thus making
them attractive targets. For example, use-after-free errors and buffer overflows feature prominently in recent Linux kernel
CVEs.8,9 Memory errors arise due to the lack of inherent memory safety in C, the main implementation language of the
Linux kernel, and can be divided into two fundamental classes.

Temporal memory errors occur when pointers to freed/uninitialized memory are dereferenced. For example, a
use-after-free error occurs when dereferencing a pointer that has been prematurely freed by another execution thread. The
Linux kernel is vulnerable to temporal memory errors because it is written in C, and thus does not benefit from automated
garbage collection. Instead, kernel object lifetimes are managed using reference counters.10 Whenever a new reference
to an object is taken, the object's reference counter is incremented, and whenever the object is released, the counter is
decremented. When the counter reaches zero, the object can be safely destroyed and its memory freed. Reference coun-
ters in the Linux kernel are typically implemented using the atomic_t type,11 which is, in turn, implemented as an int
with a general purpose atomic API consisting of over 100 functions. This can give rise to temporal memory errors since
atomic_t can overflow, as was the case in, eg, CVE-2014-2851, CVE-2016-4558, and CVE-2016-0728.

Spatial memory errors occur when pointers are used to access memory outside the bounds of their intended areas.
For example, a buffer overflow occurs when the amount of data written exceeds the size of the target buffer. The Linux
kernel is vulnerable to spatial memory errors as any other piece of C code due to the bugs introduced by its develop-
ers. Spatial memory errors in the mainline Linux kernel are pretty common and have appeared in, eg, CVE-2014-0196,
CVE-2016-8440, CVE-2016-8459, and CVE-2017-7895.

Although memory safety has been scrutinized for decades (Section 3), much of the work has focused on user space.
These solutions are not readily transferable to kernel space. For example, schemes like SoftBound12 defend against spatial
memory errors by storing pointer metadata in a disjoint data structure using a fast static addressing scheme (eg, a large
hash table). However, the range of memory addresses required for this data structure far exceeds the physical memory
available on most systems. This is only possible for user space applications because the kernel can handle page faults
when a virtual address has not yet been mapped to physical memory. Since the kernel cannot handle its own page faults,
this type of scheme cannot be used in kernel space.

Although there have been a small number of proposals for improving kernel memory safety (eg, kCFI13 and KENALI14),
these have not considered the critical issue of deployability in the mainline Linux kernel. Other mechanisms, such as the
widely used kernel address sanitizer (KASAN),15 are intended as debugging facilities, not runtime protection.

Contributions: In this paper, we present a solution for mitigating one of the major causes of temporal errors, and a
solution for mitigating spatial memory errors in general. Specifically, we claim the following contributions.

• Extended refcount_t API: After performing a kernel-wide analysis of reference counters, we contributed to the
design of refcount_t, a new reference counter data type that prevents reference counter overflows and significantly
reduces the complexity of the previous reference counter design (Section 5.3).

• Converting reference counters: Locating reference counters in the kernel is nontrivial due to the diverse imple-
mentations and kernel-wide distribution. To achieve this, we developed a heuristic technique to identify instances of
reference counters in the kernel source code (Section 5.1). Using this technique, we converted the core parts of the
kernel source tree to use the new refcount_t API (Section 5.6). At the time of writing, 170 of our 233 refcount_t
conversion patches have already been integrated.

• Memory protection extension for kernel (MPXK): We present a new spatial memory error prevention mechanism
for the Linux kernel based on the recently released Intel memory protection extensions (MPXs) (Section 6). Applying
MPX to the kernel is nontrivial due the strict performance and memory requirements. In particular, this required a
complete redesign of how MPX memory is handled in the kernel, compared with the user space MPX variant.

• Evaluation: We present a systematic analysis of refcount_t and MPXK in terms of performance, security, and
usability for kernel developers (Section 7). Such analysis is particularly challenging for nonfunctional features where
microbenchmarks are not representative of real-world impact and target platforms are diverse. In the interest of
reproducibility, we make source code and test setups available at https://github:com/ssg-kernel-memory-safety.

• Experience: One of our primary considerations was to develop memory protection techniques that can be deployed in
the mainline Linux kernel. As demonstrated by our conversion of kernel reference counters, our efforts have been suc-
cessful. In Section 8, we reflect on our experience of working with the Linux kernel maintainers and offer suggestions
for other researchers with the same objective.

RESHETOVA ET AL. 2239

2 BACKGROUND

2.1 Linux kernel reference counters
Temporal memory errors typically arise in systems that do not have automated mechanisms for object destruction and
memory deallocation (ie, garbage collection). In simple nonconcurrent C programs, objects typically have well defined
and predictable allocation and release patterns, which make it trivial to free them manually. However, in complex systems
like the Linux kernel, objects are extensively shared and reused to minimize CPU and memory use. For example, in the
Linux kernel, everything from filesystem nodes to group permission data structures are shared and reused. To enable
this sharing sharing and reuse of kernel objects, the Linux kernel makes extensive use of reference counters.10 However,
reference counting schemes are historically error prone; a missed increment or decrement, often in an obscure code path,
could imbalance the counter and cause a use-after-free error.

As explained in Section 1, reference counters in the Linux kernel are typically implemented using the atomic_t
type,11 which is, in turn, implemented as an int, which can thus overflow. In other words, this type of reference counter
can be reset to zero using only increments, which will inevitably result in the object being prematurely freed, leading
to a use-after-free error. Overflow bugs are particularly hard to detect using static code analysis or fuzzing techniques
because they require many consequent iterations to trigger the overflow.16 A recent surge of exploitable errors, such
as CVE-2014-2851, CVE-2016-4558, CVE-2016-0728, CVE-2017-7487, and CVE-2017-8925, specifically target reference
counters. In addition, the general purpose API also provides ample room for subtly incorrect reference counting schemes
motivated by performance or implementation shortcuts.

2.2 Intel MPXs
Intel MPXs17 is a recent technology to prevent spatial memory errors. It is supported on both Pentium core and Atom
core microarchitectures from Skylake and Goldmount onwards, thus targeting a significant range of end devices from
desktops to mobile and embedded processors. In order to use the MPX hardware, an application must be compiled with
an MPX-enabled compiler, such as GCC or Intel C++ Compiler (ICC), so that the resulting binary includes the new
MPX instructions. In GNU Compiler Collection (GCC), this support is built around the architecture-independent pointer
bounds checker. At present, these compilers only support MPX for user space applications. Furthermore, the application
must be run on an MPX-enabled operating system, which manages the MPX metadata. Memory protection extension
is source and binary compatible, meaning that no source code changes are required and that MPX-instrumented bina-
ries can be linked with nonMPX binaries (eg, system libraries). The MPX-instrumented binaries can still be run on all
systems, including legacy systems without MPX hardware. If MPX hardware is available, the instrumented binaries will
automatically detect and configure this hardware when the application is initialized. However, the checks are performed
by compiler instrumentation and can only cover compiler generated code, not, for instance, assembly.

Memory protection extension prevents spatial memory errors by checking pointer bounds before a pointer is derefer-
enced. Every pointer is associated with an upper and lower bound, which are determined by means of compile-time code
instrumentation. For a given pointer, the bounds can either be set statically (eg, based on static data structure sizes), or
dynamically (eg, using instrumented memory allocators).

The MPX instrumentation uses the new bndcl and bndcu instructions to explicitly check the bounds before any use
of a pointer, so the type of access performed by the pointer (read, write, or execute) does not matter. For example, malloc
is instrumented to set the bounds of newly allocated pointers. When pointers are derived from others, eg, a pointer into
a substructure is taken, the bounds are typically narrowed to that of the substructure. The narrowed bounds then behave
as other bounds, ie, they are checked upon pointer dereference. This narrowing is omitted in specific cases that indicate
noncompatible use. For instance, a pointer to the first element of an array is often used as an iterator; hence, its bounds
cannot be narrowed. Memory protection extension does consider pointer arithmetic and will not modify bounds based
on such modifications.

In order to perform a bounds check, the pointer's bounds must be loaded in one of the four new MPX bound (bndx)
registers. Memory protection extension stores pointer bounds separately from the pointer itself, either in a special purpose
data structure, the stack, or in static memory. In some cases, the bounds to be stored cannot be determined at compile
time, preventing the use of static or stack memory (eg, a dynamically sized array of pointers). In these cases, bounds are
stored in memory in a new two-level metadata structure and accessed using the new bound load (bndldx) and store
(bndstx) instructions. As shown in Figure 1, these instructions use bits 20 to 47 of the pointer's address that are used as

2240 RESHETOVA ET AL.

FIGURE 1 The memory protection extension bounds addressing scheme uses the 2 GB bound directory to lookup 4 MB bound tables,
which, in turn, contain the bounds information for individual pointers (sizes reported for 64-bit architectures). Using virtual memory and
paging, the kernel only fills/allocates these data structures on demand, thus keeping actual memory use relatively low

an index into the process's bound directory (BD), which contains pointers to the relevant bound tables (BTs). Bits 3 to 19
of the pointer's address are then used as an index into the specific BT that contains the address and bounds for the pointer.
On 64-bit systems, the BD is 2 GB and each BT is 4 MB, which means that a BT can accommodate metadata for up to 217

pointers. A pathological case with dedicated physical memory would thus require a base of 2 GB in addition to 4 MB for
each pointer. To reduce this high memory overhead, the Linux kernel only allocates physical memory to the regions of
the BD that are actually used, and only allocates individual BTs when they are accessed. When a bounds check fails, the
CPU issues an exception that must be handled by the kernel. Current kernel implementations allow user space processes
to register their own error handlers, which can then either log or abort on bound violations.

3 RELATED WORK

Research on memory safety has long roots in both industry and academia, with many solutions proposed to detect, miti-
gate, or eliminate various types of memory errors. However, the vast majority of these have not treated deployability as a
primary consideration, and so have not been deployed or used in real systems. Purify,18 Shadow Guarding,19,20 SoftBound,12

and other similar approaches21-25 have unacceptably high runtime performance overhead. CCured26 and Cyclone27 require
source code changes and are not backward compatible.

Moreover, these solutions have focused on user space and usually cannot be applied in kernel space. Some recent notable
exceptions are kCFI13 and KENALI,14 but from an implementation standpoint, neither of these have targeted integration
with the mainline kernel. To our knowledge, none of these are used as runtime security mechanisms in production sys-
tems. A notable exception is the PaX/Grsecurity patches that have pioneered many in-use security mechanisms, such as
address space layout randomization.28 PaX/Grsecurity also includes a PAX_REFCOUNT29 feature that prevents reference
counter overflows, but requires extensive modification of the underlying atomic types. These extensive changes, and a
potential race condition, made this feature unsuitable for mainline kernel adoption.29

Other tools are widely used to debug memory errors during development. For example, Valgrind30 offers a suite of
six tools for debugging, profiling, and error detection, including the detection of memory errors. AddressSanitizer31 is
arguably the state of the art in runtime memory error detection, but is unsuitable for production use due to performance
overhead. KASAN15 is integrated into the mainline Linux kernel and offers similar protections for the kernel, but again
incurs performance overheads that are unacceptably high for most production use cases.

From a production perspective, much work has focused on preventing the exploitation of memory errors. Exploitabil-
ity of buffer overflows, whether stack based or heap based, can be limited by preventing an attacker from misusing
overflown data. One early mitigation technique is the nonexecutable bit for stack, heap, and data pages.32,33 However,
this can be circumvented by using overflows for execution redirection into other legitimate code memory, such as the C
library in so called return-to-libc attacks, or more generally to any executable process memory in return-oriented pro-
gramming attacks.34 Another mitigation technique is the use stack canaries to detect stack overflows, eg, StackGuard35

and StackShield.36 However, these detection techniques can typically be circumvented using more selective overflows
that avoid the canaries, or by exploiting other callback pointers such as exception handlers. Probabilistic mitigation

RESHETOVA ET AL. 2241

techniques, such as memory randomization,28,37 are commonly used, but have proven difficult to secure against indirect
and direct memory leaks that divulge the randomization patterns, or techniques such as heap spraying.38

In contrast to the development/debugging temporal safety tools and the runtime friendly mitigation measures, MPXK
is a runtime efficient system focused on the prevention of the underlying memory errors. The MPXK shares some con-
ceptual similarities with previous solutions.12,26,27,39,40 Like these systems, MPXK does not use fat pointers, which alter the
implementation of pointers to store both the pointer and the bounds together, but instead preserves the original mem-
ory layout. Unlike purely software-based systems, such as SoftBound,12 MPXK has the advantage of hardware registers
for propagating bounds and hardware instructions for enforcing bounds. HardBound41 employs hardware support simi-
lar to MPXK, but has a worst-case memory overhead of almost 200%. However, HardBound has only been simulated on
the micro-operation level and lacks any existing hardware support. Unlike MPXK, none of these previous schemes have
been designed for use in the kernel.

4 PROBLEM STATEMENT

As explained previously, two major causes of memory errors are (1) temporal memory errors caused by reference counter
overflows and (2) spatial memory errors arising from out-of-bounds memory accesses. Our objective is to develop solutions
that proactively protect the Linux kernel against these two causes of memory errors. Specifically, we define the following
requirements.

• Reference counter overflows: We require a reference counter type and associated API in which the counter is
guaranteed never to overflow.

• Out-of-bounds memory accesses: We require an access control scheme for kernel memory that prevents
out-of-bounds accesses.

In addition to the aforementioned requirements, the following are mandatory design considerations in order for the
aforementioned solutions to be used in practice.

• Performance: Some kernel subsystems, such as networking and filesystem, have strict performance requirements.
Any security mechanisms that are perceived to add unacceptable performance penalty risk being rejected by the
maintainers of these subsystems. However, there is no kernel-wide definition of what constitutes an unacceptable
performance penalty, as this differs per subsystem. Furthermore, the Linux kernel runs on a vast range of devices,
including closed fixed-function devices like routers, where software attacks are not a threat but performance require-
ments are stringent. Thus, the balance between security and performance must be configurable to meet the constraints
of different usage scenarios.

• Deployability: In order to be integrated into the mainline Linux kernel, a solution should follow the Linux kernel
design guidelines, minimize the number and extent of kernel-wide changes, and be sufficiently easy to use and main-
tain. Usability for kernel developers is particularly crucial for new features that may be adopted at the discretion of
subsystem developers.

5 REFERENCE COUNTER OVERFLOWS

A prerequisite for the analysis and conversion of reference counters is to identify all uses of reference counters in the ker-
nel. This is nontrivial because (1) reference counters are often implemented using a general purpose atomic integer type,
which is also used for other purposes; and (2) not all reference counters follow conventional practices. Unconventional
reference counter implementations cannot be ignored because these are usually more likely to be error prone, and would
thus benefit the most from our security mechanism.

Recently, a new refcount_t type and a corresponding minimal API were introduced by one of the Linux maintain-
ers, Peter Zijlstra. This prevents incrementing a reference counter from zero or overflowing the counter. However, our
kernel-wide analysis showed that the refcount_t API was too restrictive to be used in certain kernel subsystems. To
overcome this, we proposed several additions to the initial refcount_t API, making it widely usable as a replacement
for existing reference counters. Using this improved API, we have developed a set of patches to convert all conventional
reference counters in the kernel to use refcount_t.

2242 RESHETOVA ET AL.

Listing 1 Initial bare refcount_t API [Colour figure can be viewed at wileyonlinelibrary.com]

5.1 Analyzing Linux kernel reference counters
We use Coccinelle,42 a static analyzer integrated into the Linux kernel build system (KBuild), to systematically analyze
the kernel source code and locate all reference counters based on the atomic_t type. Coccinelle takes code patterns as
input and finds (or replaces) their occurrences in the given code base. We defined three such code patterns to identify
reference counters based on their behavior (see Listing A1 in the Appendix for the full patterns).

1. Using atomic_dec_and_test (or one of its variants) to decrement an atomic variable, testing if the resulting value
is zero, and if so, freeing a referenced object. This is the archetypical reference counter use case.

2. Using atomic_add_return to decrement a variable (by adding −1), and comparing its updated value against zero.
This is a variation of the basic dec_and_test case using a different function.

3. Using atomic_add_unless to decrement a counter only when its value is not one. This case is less common.

These patterns are strong indicators that the identified object employs an atomic_t reference counting scheme. So
far, this approach has detected all occurrences of reference counters. Some false positives were reported, particularly in
implementations that make use of atomic_t variables for purposes other than reference counting. For example, under
one condition, an object might be freed when the counter reaches zero (like a reference counter), but under a different
condition, the object might instead be recycled when the counter reaches zero (see Section 5.5 for examples). Of the 250
atomic_t variables reported on an unmodified v4.10 kernel, we have manually confirmed 233 variables as reference
counters.

5.2 refcount_t API
The initial refcount_t API, introduced by Peter Zijlstra* (Listing 1), was designed around strict semantically correct
reference counter use. This meant that beyond set and read calls, the API provided only two incrementing functions
and three decrementing functions.

Both incrementing functions refuse to increment a counter when its value is zero to avoid potential use-after-free errors
as illustrated in Figure 2. The refcount_inc_not_zero function returns a true value if the counter was nonzero,
indicating that the referenced object is safe to use. Alternatively, refcount_inc can be used to avoid redundant checks
in situations where the resulting value will definitely be positive.

The three decrementing functions return a value of true if the counter value reaches zero, and include compile-time
warnings to ensure that this return value is checked. When a reference counter reaches zero, the object should
always be released to avoid a memory leak. Therefcount_dec_and_mutex_lock and refcount_dec_and_lock
atomically combine the counter decrement with acquiring a mutex or lock.

The main challenge in designing the refcount_t API was how to deal with an event that would otherwise cause the
counter to overflow. One approach would be to simply ignore the event, such that the counter remains at its maximum
value. However, this means that the number of references to the object will be greater than the maximum counter value.
If the counter is subsequently decremented, it will reach zero and the object will be freed before all references have been
released, leading to a use-after-free error. To overcome this challenge, therefcount_tAPI instead saturates the counter,
such that it remains at its maximum value, even if there are subsequent increment or decrement events (Algorithms 1
and 2). A saturated counter would, therefore, result in a memory leak since the object will never be freed. However, a
cleanly logged memory leak is a small price to pay for avoiding the potential security vulnerabilities of a reference counter
overflow. This approach is similar to that previously used by the PaX/Grsecurity patches.29

*http://lwn.net/Articles/713645/

RESHETOVA ET AL. 2243

Figure 2 Potential use-after-free when incrementing a reference counter from zero [Colour figure can be viewed at wileyonlinelibrary.com]

5.3 Our extensions to the refcount_t API
We conducted a systematic analysis of existing reference counters in the Linux kernel source code. This revealed several
variations of the strict archetypical reference counting schemes that are incompatible with the initial refcount_t API.

2244 RESHETOVA ET AL.

Listing 2 Our additions to the refcount_t API [Colour figure can be viewed at wileyonlinelibrary.com]

As a result, we designed several API additions that have subsequently been integrated into the Linux kernel.† Our new
API calls are shown in Listing 2.

The functions allowing arbitrary additions and subtractions, ie, refcount_add and refcount_sub, are necessary
for situations in which larger value changes occur. For example, the sk_wmem_alloc‡ variable in the networking sub-
system serves as a reference counter but also tracks the transfer queue, and is thus subject to arbitrary additions and
subtractions. The return values of refcount_sub_and_test and refcount_add_not_zero indicate whether the
counter has reached zero. We introduced refcount_dec to accommodate situations in which the counter will defi-
nitely be nonzero and a forced return value check would incur needless overhead. For instance, some functions in the
btrfs filesystem§ handle nodes that are guaranteed to be cached, ie, there will always be at least one reference held
by the cache. Finally, refcount_dec_if_one and refcount_dec_not_one enable schemes that require specific
operations before or instead of releasing objects. For instance, the networking subsystem extensively uses patterns where
a reference counter value of one indicates that an object is invalid but can be recycled.

5.4 Implementation considerations
To avoid costly lock or mutex use, the generic implementation of the refcount_t API, ie, nonarchitecture-specific
implementation, uses the compare-and-swap pattern, which is built around the atomic atomic_cmpxchg function
shown in Algorithm 3. On x86, atomic_cmpxchg is implemented as a single atomic CPU instruction (cmpxchg), but
the implementation is guaranteed to be atomic regardless of architecture. The function always returns the prior value, but
exchanges it only if it was equal to the given condition value comp. Compare-and-swap works by indefinitely looping until
a cmpxchg succeeds. This avoids costly locks and allows all but the cmpxchg to be nonatomic. Note that in the typical
case, without concurrent modifications, the loop runs only once, thus being much more efficient than synchronization
mechanisms (eg, a lock or mutex).

As an example of the extendedrefcount_tAPI implementation, consider therefcount_add_not_zero function
shown in Algorithm 4. It is used to increase refcount_t when acquiring a reference to the associated object, and a
return value of true indicates that the counter was nonzero and thus the associated object is safe to use. The actual value
from a user perspective is irrelevant and refcount_add_not_zero guarantees only that the return value is true if and
only if the value of refcount_t at the time of the call was nonzero. Internally, the function further guarantees that the
increment takes place only when the prior value was in the open interval (0,UINT_MAX), thus preventing use after free
due to either increment from zero or overflow. This case results in the default return statement at line 20 of Algorithm 4.

†http://www.openwall.com/lists/kernel-hardening/2016/11/28/4
‡http://elixir.free-electrons.com/linux/v4.10/source/include/net/sock.h}L389
§http://elixir:free-electrons:com/linux/v4:10/source/fs/btrfs/raid56:c}L789.

RESHETOVA ET AL. 2245

Attempted increment from zero or UINT_MAX results in returns at lines 3 and 6, respectively. Finally, an addition that
would overflow the counter instead saturates it by setting its value to UINT_MAX on line 10.

5.5 Challenges
Despite the additions to the refcount_t API, several reference counting instances nonetheless required careful analy-
sis, and in some cases, modifications to the underlying logic. These challenges were the main reason for not automating
the conversion of reference counting schemes using our Coccinelle patterns. The most common challenges are object pool
patterns and nonconventional reference counters.

For example, some implementations of the object pool pattern use negative values of the reference counter to distinguish
objects that should be recycled from those that should be freed. Our additions to the refcount_t API support this
pattern without resorting to negative reference counter values by using the value of one to indicate that the object should
be recycled. These implementations therefore often necessitated nontrivial changes to ensure that neither increment on
zero operations nor negative values are expected. Overall, we encountered six particularly challenging recycling schemes.
For example, the inoderefcount_t conversion spanned a total of 10 patches.¶

In some cases, reference counters were used in nonconventional ways, such as to govern other behavior or track other
statistics in addition to the strict reference count itself (eg, the network socket sk_wmem_alloc variable described
above). Straightforward conversion to use the refcount_t API can be surprising or outright erroneous for such uncon-
ventional uses; it might for instance be expected that such variables can be incremented from zero or potentially reach
negative values. In our conversion efforts, we encountered 21 distinct reference counters in this category.

5.6 Deployment of refcount_t
We developed 233 distinct kernel patches, each converting one distinct variable, spanning all the kernel subsystems. Dur-
ing our work, therefcount_tAPI, with our additions, was also finalized in the mainline Linux kernel. The next stage of

¶http://lkml.org/lkml/2017/2/24/599

2246 RESHETOVA ET AL.

our work consisted of submitting all the patches to the respective kernel subsystem maintainers and adapting them based
on their feedback. Based on discussions with maintainers, some patches were permanently dropped, either because they
would require extensive changes in affected subsystems or would incur unacceptable performance penalty without any
realistic risk of actually overflowing the particular counter. As explained in Section 4, some performance-sensitive sys-
tems proved challenging to convert due to performance concerns. As a result, a new CONFIG_REFCOUNT_FULL kernel
configuration option was added to allow switching the refcount_t protections off, and thus, use the new API without
any performance overhead. This can be utilized by devices that have high-performance requirements but are less con-
cerned about security based on their nature (eg, closed devices such as routers that do not allow installation of untrusted
software). These patching efforts, discussions, and patch reviews also uncovered prior reference counting bugs that were
fixed in subsequent kernel patches.#

6 OUT- OF-BOUNDS MEMORY ACCESS

To prevent spatial memory errors in the Linux kernel, we have adapted Intel MPX for in-kernel use. The resulting solu-
tion is called MPXK. Although MPX is currently only available in Intel processors, it covers a very large share of existing
devices (eg, more than 99% of all servers have Intel processors43). Moreover, we hope that, if this technology proves to be
successful in preventing spatial memory errors, other CPU vendors would introduce similar technologies. Since the MPX
instrumentation (see Section 2.2) utilizes the architecture-independent pointer bounds checker, it should be straightfor-
ward to adapt the software components to support similar features from other vendors. The current MPX hardware can
be used in both user space and kernel space because it has two distinct sets configuration registers. However, as explained
in Section 2.2, current support for MPX is only available for user space applications and requires the assistance of the
kernel.‖ Prior to our work, MPX has not been used to protect kernel space.

6.1 Challenges
The following challenges arise when attempting to use MPX in kernel space.

Memory use: The MPX BD and BTs incur a high memory overhead. As explained in Section 2.2, user space MPX
attempts to reduce this overhead by allocating this memory only when needed. However, this requires the kernel to
step in at arbitrary points to handle page faults or bound faults caused by BD dereferences or unallocated BTs. This
approach cannot be used in the kernel because the kernel cannot handle page faults at arbitrary points within its own
execution. It is also not feasible to preallocate the BD and BTs, as this would increase base memory usage by over 500%**

and require extensive modifications to accommodate certain classes of pointers (eg, pointers originating from user space).
An alternative approach would be to substitute the hardware-backed BD and BTs with our own metadata, similar to
SoftBound12 or KASAN.15 However, this would still incur the same memory and performance overheads as those systems.

Kernel support code: Memory protection extension is supported in user space by GCC library implementations of
various support functionality, such as initialization and function wrappers. The user space instrumentation initializes
MPX during process startup by allocating the BD in virtual memory and initializing the MPX hardware. However, this
existing initialization code cannot be used directly in the Linux kernel because kernel space MPX must be configured
during the kernel boot process.

In user space, the compiler also provides instrumented wrapper functions for all memory manipulation functions, such
as memmove, strcpy, and malloc. These user space wrappers check incoming pointer bounds and ensure that the
correct bounds are associated with the returned pointers. They are also responsible for updating the BD and BTs (eg,
memcopymust duplicate any BD and BT entries associated with the copied memory). However, these user space wrappers
also cannot be used in the kernel because the kernel implements its own standard library.

Binary compatibility (mixed code): User space MPX is binary compatible and can therefore be used in mixed
environments with both MPX-enabled code and legacy (noninstrumented) code. A fundamental problem for any
binary-compatible bounds checking scheme is that the instrumentation cannot track pointer manipulation performed by
legacy code and therefore cannot make any assumptions about the pointer bounds after the execution flow returns from

http://lkml.org/lkml/2017/6/27/567, http://lkml.org/lkml/2017/3/28/383, etc.
‖Available since the Linux 3.19 kernel release.
**Each potential pointer, ie, any used memory, would require a preallocated BD entry and BT entry, which is the size of four pointers.

RESHETOVA ET AL. 2247

the legacy code. Memory protection extension offers a partial solution by storing the pointer's value together with its
bounds (using the bndstx instruction) before entering legacy code. When the legacy code returns, MPX uses bndldx
to load the bounds again, but since the pointer has been modified, MPX will reset the bounds, essentially making them
infinite. This means that pointers changed by legacy code (legitimately or otherwise) can no longer be tracked by MPX.

6.2 Design of MPXK
In this section, we describe the design of our solution, MPXK, and explain how we solved the aforementioned challenges.

At runtime, MPXK prevents spatial memory errors in the same way as user space MPX, ie, by checking pointer bounds
before a pointer is dereferenced. On its base, MPXK determines pointer bounds the same way as MPX, ie, from metadata
set by the MPX compile-time instrumentation. However, when the pointer bounds cannot be propagated using the MPX
instrumentation (via MPX registers), MPXK does not use the BD and BTs to store and fetch them, but uses its own method,
as explained in the memory use paragraph as follows. Both user space MPX and MPXK perform narrowing of bounds in
exactly the same way, as outlined in Section 2.2.

Memory use: Instead of using BD and BTs for storing and retrieving pointer bounds, MPXK determines them by using
existing kernel metadata. Specifically, we reuse the kernel memory management metadata created by kmalloc-based
allocators that already contain the information about the sizes of allocations. Thus, MPXK does not need to have any addi-
tional dynamic storage for the bounds information. We define a new function, mpxk_load_bounds, that queries this
existing kernel metadata using a kernel-provided interface to determine the bounds for a pointer allocated by kmalloc,
and loads these into the MPX registers. In case a pointer has not been allocated using kmalloc-based allocator, the func-
tion returns empty bounds. A side effect of using existing kernel metadata is that retrieved bounds are rounded up to the
nearest allocator cache size (ie, may be slightly larger than the requested allocation size). However, this has no security
implications because the allocator will not allocate any other objects in the round-up memory area.44

Kernel support code: Since we cannot use the existing MPX user space memory management wrappers, we have
developed similar kernel-specific wrapper functions that are implemented as normal in-kernel library functions. These
MPXK wrappers are significantly less complex (and thus easier to audit for security) than their user space counterparts
because the MPXK wrappers do not need to include logic for updating the BD or BTs. In addition to the memory man-
agement wrappers, we have also developed new code to initialize the MPX hardware during the kernel boot process. This
addresses the second challenge described in Section 6.1.

Binary compatibility: Since in both MPX and MPXK, function arguments rely on the caller to supply bounds, neither
scheme can determine bounds for arguments originating from noninstrumented code, and thus, these bounds cannot be
checked. As future work, we are investigating how to determine such bounds using the mpxk_load_bounds function.
However, since MPXK does not use the bndstx and bndldx instructions but instead attempts to load such bounds
using mpxk_load_bounds, it can continue tracking pointers that are modified by legacy code, provided the pointer is
supported by mpxk_load_bounds.

Table 1 summarizes the main differences between user space MPX and MPXK.

Kernel instrumentation details
Our MPXK instrumentation is based on the existing MPX support in GCC, but uses our new GCC plugin to adapt this
for use in the kernel. Specifically, our plugin instruments the kernel code with the new MPXK bound loading function,
MPXK initialization code, and kernel space wrapper functions described previously. We use the GCC plugin system that
has been incorporated into Kbuild, the Linux build system since Linux v4.8, to ensure that MPXK is seamlessly integrated
with the regular kernel build workflow. To include MPXK instrumentation, a developer simply needs to add predefined

TABLE 1 Summary of the main differences between memory protection extension (MPX) and MPX for kernel (MPXK)

MPX MPXK
Hardware initialization At process start At kernel boot
Dynamic bounds storage Uses BD and BTs Reuses kernel metadata9

Memory management function wrappers Compiler-provided user space wrappers Kernel's own lightweight wrappers
Pointers modified by legacy code Cannot be tracked Can be tracked if supported by mpxk_load_bounds

9With the exception of the case, described in Section 7.1 Indirect pointers paragraph. Abbreviations: BD, bound directory; BT, bound table.

2248 RESHETOVA ET AL.

MPXK flags to any Makefile entries. The plugin itself is implemented in four compiler passes, of which the first three
operate on the high-level intermediate representation, GIMPLE, and the last on the lower-level register transfer language,
as follows.

1. mpxk_pass_wrappers replaces specific memory-altering function calls with their corresponding MPXK wrapper
functions, eg, replacing kmalloc calls with mpxk_wrapper_kmalloc calls.

2. mpxk_pass_cfun_args inserts MPXK bound loads for function arguments where bounds are not passed via the four
bndx registers. This naturally happens when more than four bounds are passed, or due to implementation specifics
for any argument beyond the sixth.

3. mpxk_pass_bnd_store replaces bndldx calls with MPXK bound loads, and removes bndstx calls. This covers all
high-level (GIMPLE) loads and saves, including return values to legacy function calls.

4. mpxk_pass_sweeper is a final low-level pass that removes any remaining bndldx and bndstx instructions. This pass
is required to remove instructions that are inserted during the expansion from GIMPLE to register transfer language.

The source-code for our MPXK-plugin is available at https://github.com/ssg-kernel-memory-safety.

7 EVALUATION

We evaluate our proposed solutions against the requirements defined in Section 4.

7.1 Security guarantees
We analyze the security guarantees of both refcount_t and MPXK, first, through a principled theoretical analysis, and
second, by considering the mitigation of real-world vulnerabilities.

Reference counter overflows
With the exception of refcount_set and refcount_read, all functions that modify refcount_t can be grouped
into increasing and decreasing functions.

All increasing functions maintain the following invariants.

I1: The resulting value will not be smaller than the original value;
I2: A value of zero will not be increased.

The decreasing functions maintain the corresponding invariants.

D1: The resulting value will not be larger than the original value;
D2: A value of UINT_MAX will not be decreased.

For example, the increasing function refcount_add_not_zero (Algorithm 4) maintains the invariants as follows.

• input= 0: Lines 3 and 4 prevent the counter being increased (I2).
• input=UINT_MAX: Lines 6 and 7 ensure the counter will never overflow (I1).
• input∈ (0,UINT_MAX): Lines 10 and 11 ensure that the counter value cannot overflow as a result of addition (I1).

Line 13 ensures that the addition is performed atomically, thus preventing unintended effects if interleaved threads
update the counter concurrently. Regardless of how the algorithm exits, the invariant is maintained. The same exhaustive
case-by-case enumeration can be used to demonstrate that all otherrefcount_t functions maintain the aforementioned
invariants.

An attacker could still attempt to cause a use-after-free error by finding and invoking an extra decrement (ie, decrement
without a corresponding increment). This is a fundamental issue inherent in all reference counting schemes. However,
the errors caused by the extra decrement would almost certainly be detected early in development or testing. In contrast,
missing decrements are very hard to detect through testing as they may require millions of increments to a single counter
before resulting in observable errors. Thanks to the newrefcount_t, missing decrements can no longer cause reference
counter overflows.

RESHETOVA ET AL. 2249

In terms of real-world impact, refcount_t would have prevented several past exploits, including CVE-2014-2851,
CVE-2016-0728, and CVE-2016-4558. Although it is hard to quantify the current (and future) security impact on the
kernel, our observations during the conversion process support the intuition that the strict refcount_tAPI discourages
unsafe implementations. For example, at least two new reference counting bugs†† were detected and fixed due to their
incompatibility with the new API.

As a practical test for the protection provided by the refcount_t type and API, we have tested an attack‡‡ for the
kernel CVE-2016-0728. The exploit abuses a bug inside kernel keyring facility, ie, forgotten decrement of the reference
counter when substituting the session keyring with the same keyring. We have made a test on Ubuntu 16.04 with 4.4 main-
line kernel with the bug fix commit reverted and converting the corresponding refcounter to use the new refcount_t
type. The exploit was successfully stopped (it fails to get the root credentials) and the runtime dmesg log was showing
an overflow detected by the refcount_t interface. The corresponding conversion to refcount_t type was one of the
first to be merged to the mainline Linux kernel.

Out-of-bounds memory access
The objective of MPXK is to prevent spatial memory errors by performing pointer bounds checking. Specifically, for objects
with known bounds, MPXK will ensure that pointers to those objects cannot be dereferenced outside the object's bounds
(eg, as would be the case in a classic buffer overflow). A fundamental challenge of bounds checking schemes is thus how
to determine the correct bounds for a specific pointer. The MPXK combines compile and runtime mechanisms to load
bounds, which means that its ability to load bounds depends on the specific situation.

Static pointers: In the case of local or global pointers to nondynamic memory, all checks and pointer bound handling
can be determined and instrumented during compile time. At runtime, such bounds are stored along with the pointers
themselves (eg, stack based pointers have stack based bounds) and updated by static instrumentation. The compile-time
instrumentation also propagates bounds into and back from function calls. The MPXK can therefore comprehensively
perform bounds checking on all static pointers.

Dynamically allocated pointers: Pointers stored in dynamic memory cannot rely on compile-time information and
thus require runtime support. The MPXK mpxk_load_bounds function uses available in-kernel memory management
metadata to determine the allocated memory area for a specific memory address. Our current implementation can deter-
mine bounds for all objects allocated by kmalloc-based allocators and support for other dynamic memory allocators
could be similarly added.

Indirect pointers: Indirect pointers, eg, pointers contained by another data structure, are problematic because both
their origin and size may be unknown at compile time. If the pointer also points to dynamically allocated memory,
mpxk_load_bounds can obtain the bounds as described previously. However, pointers to static memory do not have
equivalent runtime metadata and therefore cannot be loaded in this way. Nevertheless, in many cases, these pointers
can be covered by the existing FORTIFY_SOURCE directive, which inserts bounds checks based on compile-time-type
information.

Pointers in legacy code: Legacy code, ie, code compiled without MPXK support, is by definition not protected by
MPXK. Therefore, when pointers originating from legacy code are passed to MPX-enabled code, the bounds are typically
not known. However, unlike user space MPX, MPXK can still use mpxk_load_bounds to obtain the bounds if the
pointers point to dynamically allocated memory.

Pointer manipulation: If the attacker can corrupt a pointer's value to point to a different object without dereferencing
the pointer, this can be used to subvert bounds checking schemes. For example, object-centric schemes such as KASAN
enforce bounds based on the pointer's value. If this value is changed to point within another object's bounds, the checks
will be made (incorrectly) against the latter object's bounds. In theory, pointer-centric schemes such as user space MPX
should not be vulnerable to this type of attack, since they do not derive bounds based on the pointer's value. However,
for compatibility reasons, if MPX detects that a pointer's value has changed, it resets the pointer's bounds (ie, allows it to
access the full memory space). Like KASAN, MPXK will use the corrupted value to infer an incorrect set of bounds. The
MPXK is therefore no worse than MPX or other object-centric schemes in this regard. However, this type of attack requires
the attacker to have a prior exploit to corrupt the pointer, which should have been thwarted by MPXK in the first place.

††http://lkml.org/lkml/2017/6/27/409, http://lkml.org/lkml/2017/3/28/383
‡‡https://www.exploit-db.com/exploits/39277/

2250 RESHETOVA ET AL.

TABLE 2 CPU load measurements (in cycles) on different CPUs

Function Skylake i3-6100U (stddev) Kaby Lake i7-7500U (stddev)
atomic_inc() 15.1 (0.01) 14.7 (0.07)
refcount_inc() 38.7 (0.03) 49.1 (0.06)

TABLE 3 Netperf refcount usage measurements

Netperf Test type base (stddev) refcount (stddev) change (stddev)
UDP CPU use (%) 0.53 (0.17) 0.75 (0.06) +42.1% (34%)
TCP CPU use (%) 1.13 (0.03) 1.28 (0) +13.3% (3%)
TCP throughput (MB/s) 9358 (0) 9305 (0) -0.6% (0%)
TCP throughput (tps) 14909 (0) 14761 (0) -1.0% (0%)

Abbreviations: tps, transactions per second; TCP, transmission control protocol; UDP, user datagram
protocol.

As a practical demonstration of MPXK's real-world effectiveness, we have tested it against an exploit built around the
recent CVE-2017-7184. This vulnerability in the IP packet transformation framework xfrm is a classic buffer overflow
caused by omission of an input size verification. We first confirmed that we can successfully gain root privileges on a
current Ubuntu 16.10 installation running a custom built v4.8 kernel using the default Ubuntu kernel configuration.
We then recompiled the kernel applying MPXK on the xfrm subsystem, which caused the exploit to fail with a bound
violation reported by MPXK.

7.2 Performance
Reference counter overflows
Although the refcount_t functions consist mainly of low-overhead operations (eg, additions and subtractions), they
are often used in performance-sensitive contexts. We performed various microbenchmarks of the individual functions
during the refcount_t development.§§ The measurements were taken by running the corresponding operation 100 000
times and calculating the average. As shown in Table 2, refcount_inc introduces an average overhead of 29 CPU
cycles, compared with atomic_inc. As shown in Table 2, refcount_inc introduces an average overhead of 29 CPU
cycles, compared with atomic_inc, and the exact number of cycles varies between different tested CPU platforms.
The overhead comes from additional overflow and increment-from-zero checks that refcount_inc performs similar
to refcount_inc_and_test explained in detail in Algorithm 1.

However, microbenchmarks cannot be considered in isolation when evaluating the overall performance impact. To
gauge the overall performance impact of refcount_t, we conducted extensive measurements on the networking sub-
system using the Netperf45 performance measurement suite. We chose this subsystem because (1) it is known to be
performance sensitive, (2) it has a standardized performance measurement test suite, and (3) we encountered severe resis-
tance from mainline Linux kernel maintainers on performance grounds when proposing to convert this subsystem to use
refcount_t. The concerns are well founded due to the extensive use of reference counters (eg, when sharing network-
ing sockets and data) under potentially substantial network loads. The main challenge when evaluating performance
impact on the networking subsystem is that there are no standardized workloads, and no agreed criteria as to what con-
stitutes “acceptable” performance overhead. We used the 0-day test service¶¶ to run the tests on Haswell-EP6 processors
and the mainline v4.11-rc8 kernel. We measured the real-world performance impact of converting all 78 reference
counters in the networking subsystem and networking drivers from atomic_t to refcount_t. Each individual test
used a 300-second runtime and was executed three times.

As shown in Table 3, our Netperf measurements include CPU utilization for user datagram protocol (UDP) and trans-
mission control protocol (TCP) streams, and TCP throughput in MB/s and transactions per second. The results indicate
that throughput loss is negligible, but the average processing overhead can be substantial, ranging from 13% for UDP to
42% for TCP. First, the results indicate that, for both TCP and UDP, the average processing overhead can be substantial,
ranging from 13% for UDP to 42% for TCP. However, rows 3 and 4 in Table 3 show that this overhead does not in practice

§§http://lwn.net/Articles/718280/
¶¶https://01.org/lkp/documentation/0-day-test-service

RESHETOVA ET AL. 2251

TABLE 4 Memory protection extension for kernel (MPXK) and KASAN CPU overhead comparison

baseline KASAN MPXK
time in ns (stddev) diff in ns (stddev) % diff diff in ns (stdev) % diff

No bound load.
memcpy, 256 B 45 (0.9) +85 (1.0) +190% +11 (1.2) +30%
memcpy, 65 kB 2340 (4.3) +2673 (58.1) +114% +405 (5.1) +17%
Bound load needed.
memcpy, 256 B 45 (0.8) +87 (0.9) +195% +70 (1.5) +155%
memcpy, 65 kB 2332 (5.8) +2833 (28.2) +121% +475 (15.0) +20%

affect the overall TCP throughput (both in MB/s and transactions per second). Such processing overhead can in many sit-
uations be acceptable; desktop systems typically only use networking sporadically, and when they do, the performance is
typically limited by the internet service provider link speed, not CPU bottlenecks. In contrast, this might not be the case
in servers or embedded systems (especially routers) where processing resources may be limited and networking a major
contributor to system load. However, such systems are typically closed systems, ie, it is not possible to install additional
applications or other untrusted software, so therefore their attack surface is already reduced. In these circumstances, the
CONFIG_REFCOUNT_FULL kernel configuration option can be used to disable the protection offered by refcount_t
and eliminate all performance overhead. Providing this configuration option is critical to ensure that we can accommo-
date special cases, such as the aforementioned, while still allowing all other systems to benefit from these new protection
mechanisms (which are expected to be enabled by default in the future).

Out-of-bounds memory access
Some CPU overhead is to be expected due to the MPXK instrumentation and bound handling. To measure this, we con-
ducted microbenchmarks of specific functions and end-to-end performance tests with MPXK applied to entire kernel
subsystems. All MPXK benchmarks were run on an i3-6100U processor with 8 GB of memory running Ubuntu 16.04 LTS
with a v4.8 Linux kernel.

Table 4 shows the results of our microbenchmark on the memcpy function, comparing the performance of MPXK and
KASAN. The results indicate that, as expected, MPXK does introduce a measurable performance overhead. However,
compared with KASAN, the performance overhead is relatively small. The first tests (rows 1 and 2) are conducted for cases
in which the bound information is readily available in MPXK from the compiler instrumentation. This is the common case
for MPXK and the resulting overhead percentage is much smaller than for KASAN, especially as the size of copied data
increases (row 2). The second set of tests (rows 3 and 4) are for the case in which the pointer bounds have to be loaded from
the kernel memory management metadata. This is the worst case for MPXK and the largest overhead percentage arises
copying small amounts of data (row 3). However, as the size of the copied data increases (row 4), the overall overhead
percentage decreases significantly, since only one load of bounds is needed for the whole copied area. Although KASAN
also detects temporal memory errors, we controlled for this by only measuring the bounds check events, not the time
spent on allocating and deallocating the memory behind a pointer, which is required for implementing protection against
temporal memory errors.

In order to demonstrate the performance overhead when MPXK is enabled for a certain kernel subsystem, we have
measured the xfrm subsystem discussed in Section 7.1. Table 5 shows the result of our end-to-end benchmark in which
we measured the impact on an IPSec tunnel where xfrm manages the IP package transformations. This was run under
the default Ubuntu kernel configuration with our patches applied and MPXK enabled on xfrm. We used Netperf for
measurements, running five-minute tests for a total of 10 iterations. As shown in Table 5, there is a small reduction in
TCP throughput, but the impact on CPU performance is negligible. As shown in Table 5, the impact on CPU performance
for both UDP and TCP is negligible, and the resulting TCP throughput is not affected either.

The MPXK also increases runtime memory usage and kernel image size. Although we do not use the costly MPX bound
storage, some additional memory is still required to store static global and intermediary bounds. However, our memory
use comparisons indicate that this memory overhead is negligible. When deploying MPXK over the xfrm subsystem,
the memory overhead for in-memory kernel code is 110 KB, which is a 0.7% increase in total size. Similarly, the kernel
image size increased by 45 KB or 0.6%. Note that, since MPXK is specifically designed for modular deployment, it can be

2252 RESHETOVA ET AL.

TABLE 5 Netperf measurements over an IPSec tunnel with the xfrm
subsystem protected by memory protection extension for kernel (MPXK)

Netperf test baseline MPXK change (stddev)
UDP CPU use (%) 24.97 24.97 0.00% (0.02)%
TCP CPU use (%) 25.07 25.15 0.31% (0.29)%
TCP throughput (MB/s) 646.69 617.95 -4.44% (4.61)%
TCP throughput (tps) 1586.79 1547.85 -2.45% (1.66)%

Abbreviations: tps, transactions per second; TCP, transmission control protocol;
UDP, user datagram protocol.

deployed incrementally to different subsystems, and, if needed, any of the aforementioned overheads can be completely
removed for performance-sensitive modules or subsystems.

7.3 Deployability
Reference counter overflows
Deploying a new data type into a widely used system such as the Linux kernel is a significant real-world challenge.
From a usability standpoint, the API should be as simple, focused, and self-documenting as reasonably possible. The
refcount_t API in principle fulfills these requirements by providing a tightly focused API with only 14 functions.
This is a significant improvement over the 100+ functions provided by the atomic_t type previously used for reference
counting. Of the 233 patches we submitted, 170 are currently accepted, and it is anticipated that the rest will be accepted
in the near future. The refcount_t type has also been taken into use in independent work by other developers.## This
is strong confirmation that the usability goals are met in practice. Our contributions also include the Coccinelle patterns
for identifying and analyzing reference counting schemes that are potential candidated to be converted to refcount_t.
These patterns have been contributed by us to the mainline kernel, so that they can be used by other developers and
potentially added to the Linux kernel testing infrastructure in the future.

Out-of-bounds memory access
As with user space MPX, our MPXK design considers usability as a primary design objective. It is binary compatible,
meaning that it can be enabled for individual translation units. It is also source compatible since it does not require any
changes to source code. In a limited number of cases, pointer bounds checking can interfere with valid pointer arithmetic
or other atypical pointer use sometimes seen in high-performance implementations. However, such compatibility issues
are usually only present in architecture-specific implementations of higher level APIs, and can thus be accommodated in
a centralized manner by annotating incompatible functions to prevent their instrumentation. In addition, compatibility
issues are usually found during compile time and are thus easily detected during development. The MPXK is fully inte-
grated into Kbuild and provides predefined compilation flags for easy deployment. Using the MPXK_AUDIT parameter,
MPXK can also be configured to run in permissive mode where violations are only logged, which is useful for develop-
ment and incremental deployment. This gives the system administrators a choice of when to enable the more restrictive
mode, thus facilitating different deployment models.

The MPXK code base is largely self-contained and thus easy to maintain. The only exceptions are the wrapper functions
that are used to instrument memory manipulating functions. However, this is not a major concern because the kernel
memory management and string APIs are quite stable and changes are infrequent. The MPXK compiler support is all
contained within a GCC plugin, and is thus not directly dependent on GCC internals. The MPXK is thus both easy to
deploy and easy to maintain.

8 DISCUSSION

The solutions proposed in this paper and submitted as mainline Linux kernel patches are a step toward improving mem-
ory safety in the Linux kernel. One sobering fact when working with production systems and distributed development

##http://lkml.org/lkml/2017/6/1/762

RESHETOVA ET AL. 2253

communities such as the Linux kernel is that there is always a trade-off between security and deployability. It is certainly
possible to propose security solutions outside the mainline kernel, such as the long-lived PaX/Grsecurity46 patches, but
these must then be explicitly applied to production systems. Conversely, solutions that are integrated into the mainline
kernel will provide security by default to a large number of diverse devices. In this section, we reflect on our experience
of working with kernel developers and subsystem maintainers to integrate our security mechanisms into the main-
line kernel. We do not claim to provide a rigorous sociotechnical analysis of this process, but rather we offer a set of
recommendations, based on our experience, which we hope could be of value to other researchers and practitioners.

Understand context: It is not sufficient to simply read and follow the Linux kernel contribution guidelines47 when
developing your proposal. It is critical to understand the context of the subsystem to which you are attempting to con-
tribute. By context, we mean the recent history and planned developments of the subsystem, the standard ways in which
it is verified and tested, and the overall direction set by its maintainers. Presenting your contribution within the correct
context removes any initial pushback from other developers and allows the discussion to proceed to the core technical
contribution. For example, in our MPXK work, instead of contributing changes directly to the GCC core, we implemented
our GCC instrumentation as a standalone GCC plugin (Section 6) using the GCC kernel plugin framework that had been
recently added to the mainline Linux kernel. This aligned our contribution with the current direction of the GCC compiler
development.

Enable incremental deployability: In the Linux kernel, different subsystems are typically managed by distinct main-
tainers. Any solutions that require simultaneous changes to all subsystems are thus unlikely to be accepted. This has been
cited as a major reason for kernel developers turning down the PaX/Grsecurity solution for reference counters. Instead,
solutions that can be incrementally deployed, while still providing benefits, are more likely to receive a favorable recep-
tion from at least some developers. The initial deployments can serve as demonstrators to support the case for deployment
in other subsystems. For example, the conversion to the new refcount_t API can happen independently for each ref-
erence counter. Kernel maintainers can thus gradually change their code to use refcount_t rather than requiring all
kernel code to be changed at once. Similarly, we designed MPXK such that it can be independently enabled for individual
compilation units or subsystems.

Provide fine-grained configurability: The Linux kernel runs on a wide range of devices with different environ-
ments, threat models, and security requirements. Thus, any security solution (and especially those with performance
or usability implications) must support the ability to be configured to several different grades. For example, MPXK can
be enabled on selected subsystems to provide protection where needed while minimizing performance overhead (see
Section 7.3). Similarly, in our reference counter protection work, in addition to having a configuration flag for turning off
the protection behind the refcount_t interface, there is ongoing work to provide an architecture-specific fast assembly
implementation that provides similar security guarantees.48

Consider timing: Deploying any new feature that affects more than a single kernel subsystem takes considerable time.
This is largely due to the number of different people involved in maintaining various kernel subsystems and the absence
of strict organization of the development process. Researchers should plan to allocate sufficient time for this process. In
addition, one has to take into account the different stages of the kernel release process in deciding when to send patches
to maintainers for review and feedback. For example, it took us a full year to reach the current state of reference counter
protection work and have 170 out of 233 patches merged.

Finally, even if a proposed feature is ultimately not accepted, both maintainers and security researchers can learn from
the process, which can eventually lead to better security in the mainline kernel.

9 CONCLUSION AND FUTURE WORK

Securing the mainline Linux kernel is a vast and challenging task. In this paper, we have presented two solutions to proac-
tively memory errors in the kernel, ie, the first prevents temporal memory errors caused by reference counter overflows,
while the second provides hardware-assisted checking of pointer bounds to mitigate spatial memory errors. Both solutions
treat practical deployability as a primary consideration, with reference counter protection already being widely deployed
in the mainline kernel. While our solutions arguably exhibit some limitations, they nonetheless strike a pragmatic bal-
ance between deployability and security, thus ensuring they are in a position to benefit the billions of devices using the
mainline Linux kernel.

In terms of future work, we will continue our efforts to convert the remaining reference counters to refcount_t,
but the initial work has already sparked other implementation efforts and a renewed focus on the problem.

2254 RESHETOVA ET AL.

There are active efforts to migrate to the mainline kernel solutions that provide high-performance
architecture-independent implementations.48 Several MPXK improvements are also left as future work. Our support
for bound loading can be extended with support for other allocators and memory region-based bounds for pointers
not dynamically allocated. More invasive instrumentation could be used to improve corner cases where function calls
require bound loading. The wrapper implementations could similarly be improved by more invasive instrumentation, or
by forgoing wrappers altogether and instead employing direct instrumentation at call sites. This approach is not feasible
on vanilla MPX due complications caused by the bound storage, but would be quite reasonable for MPXK.

ACKNOWLEDGEMENTS
We thank the many mainline Linux kernel developers and maintainers who have participated in discussions and patiently
provided enlightening feedback and suggestions. This work was supported in part by the Intel Collaborative Research
Institute for Secure Computing at Aalto University and the Cloud Security Services (CloSer) project (3881/31/2016),
funded by Tekes/Business Finland.

ORCID

Elena Reshetova http://orcid.org/0000-0002-2298-1554

REFERENCES
1. Smalley S, Vance C, Salamon W. Implementing SELinux as a Linux Security Module. 2006. https://www.nsa.gov/resources/everyone/

digital-media-center/publications/research-papers/assets/files/implementing-selinux-as-linux-security-module-report.pdf
2. Bauer M. Paranoid penguin: an introduction to Novell AppArmor. Linux J. 2006;2006(148):13.
3. Integrity Measurement Architecture (IMA) wiki pages. 2017. http://sourceforge.net/p/linux-ima/wiki/Home/
4. Implementing dm-verity. 2017. http://source.android.com/security/verifiedboot/dm-verity
5. National Vulnerability Database: Statistics for kernel vulnerabilities. 2017. https://nvd.nist.gov/vuln/search/statistics?adv&uscore;

search=true&form&uscore;type=advanced∓results&uscore;type=statistics&query=kernel
6. Cook K. Status of the Kernel Self Protection Project. 2016. www.outflux.net/slides/2016/lss/kspp.pdf
7. Kernel Self Protection Project wiki. 2017. http://www.kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
8. Raheja S, Munjal G, Shagun. Analysis of Linux kernel vulnerabilities. Indian J Sci Technol. 2016;9(48).
9. Chen H, Mao Y, Wang X, Zhou D, Zeldovich N, Kaashoek MF. Linux kernel vulnerabilities: state-of-the-art defenses and open problems.

In: Proceedings of the Second Asia-Pacific Workshop on Systems (APSys); 2011; Shanghai, China.
10. Collins GE. A method for overlapping and erasure of lists. Commun ACM. 1960;3(12):655-657.
11. McKenney PE. Overview of Linux-kernel reference counting. Technical Report n2167=07-0027. Beaverton, OR: IBM Linux Technology

Center; 2007.
12. Nagarakatte S, Zhao J, Martin MMK, Zdancewic S. Softbound: highly compatible and complete spatial memory safety for C. In: Proceedings

of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation; 2009; Dublin, Ireland.
13. Moreira J, Rigo S, Polychronakis M, Kemerlis V. DROP THE ROP: Fine-grained Control-flow Integrity for the Linux Kernel. 2017.

https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-
Linux-Kernel-wp.pdf

14. Song C, Lee B, Lu K, Harris W, Kim T, Lee W. Enforcing kernel security invariants with data flow integrity. Paper presented: 23rd Annual
Network Annual Network and Distributed System Security Symposium (NDSS); San Diego, CA. 2016.

15. The Kernel Address Sanitizer (KASAN). 2017. www.kernel.org/doc/html/v4.10/dev-tools/kasan.html
16. Nikolenko V. Exploiting COF Vulnerabilities in the Linux kernel. 2016. ruxcon.org.au/assets/2016/slides/ruxcon2016-Vitaly.pdf
17. Ramakesavan R, Zimmerman D, Singaravelu P. Intel Memory Protection Extensions (Intel MPX) Enabling Guide. 2015. http://caxapa.ru/

thumbs/808589/4878c6471cb5ae28546a594bf25ba5c25c6f.pdf
18. Hastings R, Joyce B. Purify: fast detection of memory leaks and access errors. In: Proceedings of the Winter 1992 USENIX Conference;

1991; Berkeley, CA.
19. Patil H, Fischer CN. Efficient run-time monitoring using shadow processing. In: Proceedings of the Second International Workshop on

Automated Debugging (AADEBUG); 1995; Saint Malo, France.
20. Patil H, Fischer C. Low-cost, concurrent checking of pointer and array accesses in C programs. Softw Pract Exper. 1997;27(1):87-110.
21. Jones RWM, Kelly PHJ. Backwards-compatible bounds checking for arrays and pointers in C programs. In: Proceedings of the Third

International Workshop on Automated Debugging (AADEBUG); 1997; Linköping, Sweden.
22. Yong SH, Horwitz S. Protecting C programs from attacks via invalid pointer dereferences. ACM SIGSOFT Softw Eng Notes.

2003;28(5):307-316.

RESHETOVA ET AL. 2255

23. Xu W, DuVarney DC, Sekar R. An efficient and backwards-compatible transformation to ensure memory safety of C programs. SIGSOFT
Softw Eng Notes. 2004;29(6):117-126.

24. Nethercote N, Fitzhardinge J. Bounds-checking entire programs without recompiling. In: Proceedings of the Second Workshop on
Semantics Program Analysis and Computing Environments for Memory Management (SPACE); 2004; Venice, Italy.

25. Dhurjati D, Adve V. Backwards-compatible array bounds checking for C with very low overhead. In: Proceedings of the 28th International
Conference on Software Engineering; 2006; Shanghai, China.

26. Necula GC, McPeak S, Weimer W. CCured: type-safe retrofitting of legacy code. ACM SIGPLAN Notices. 2002;37(1):128-139.
27. Grossman D, Hicks M, Jim T, Morrisett G. Cyclone: a type-safe dialect of C. C/C++ Users J. 2005;23(1):112-139.
28. PaX address space layout randomization (ASLR). 2003. http://pax.grsecurity.net/docs/aslr.txt
29. Branco R. Grsecurity forum — Guest Blog by Rodrigo Branco: PAX_REFCOUNT Documentation. 2015. https://forums.grsecurity.net/

viewtopic.php?f=7Zt=4173
30. Nethercote N, Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation. In: Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and Implementation; 2007; San Diego, CA.
31. Serebryany K, Bruening D, Potapenko A, Vyukov D. AddressSanitizer: a fast address sanity checker. In: USENIX Annual Technical

Conference; 2012; Boston, MA.
32. Solar Designer. Linux kernel patch to remove stack exec permission. 1997. http://seclists.org/bugtraq/1997/Apr/31
33. Pax non-executable pages design & implementation. 2003. http://pax.grsecurity.net
34. Krahmer S. X86-64 buffer overflow exploits and the borrowed code chunks exploitation technique. 2005. https://trailofbits.github.io/ctf/

exploits/references/no-nx.pdf
35. Cowan C, Pu C, Maier D, et al. StackGuard: automatic adaptive detection and prevention of buffer-overflow attacks. In: Proceedings of

the 7th USENIX Security Symposium; 1998; San Antonio, TX.
36. A stack smashing technique protection tool for Linux. 2011. http://www.angelfire.com/sk/stackshield
37. Xu J, Kalbarczyk Z, Iyer RK. Transparent runtime randomization for security. Paper presented at: 22nd Symposium on Reliable Distributed

Systems (SRDS); 2003; Florence, Italy.
38. Ratanaworabhan P, Livshits B, Zorn B. NOZZLE: a defense against heap-spraying code injection attacks. Paper presented at: 18th USENIX

Security Symposium; 2009; San Jose, CA.
39. Kwon A, Dhawan U, Smith J, Knight Jr TF, DeHon A. Low-fat pointers: compact encoding and efficient gate-level implementation

of fat pointers for spatial safety and capability-based security. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS); 2013; Berlin, Germany.

40. Kuvaiskii D, Oleksenko O, Arnautov S, et al. SGXBOUNDS: memory safety for shielded execution. In: Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys); 2017; Belgrade, Serbia.

41. Devietti J, Blundell C, Martin MMK, Zdancewic S. Hardbound: architectural support for spatial safety of the C programming language.
ACM SIGARCH Comput Archit News. 2008;36(1):103-114.

42. Coccinelle Project. 2017. http://coccinelle.lip6.fr/
43. Pike JP. Server CPU Predictions For 2017. 2017. https://www.forbes.com/sites/moorinsights/2017/01/10/server-cpu-predictions-for-

2017/27adb50365a7
44. Akritidis P, Costa M, Castro M, Hand S. Baggy bounds checking: an efficient and backwards-compatible defense against out-of-bounds

errors. Paper presented at: 18th USENIX Security Symposium; 2009; San Jose, CA.
45. Netperf Project. 2017. http://hewlettpackard.github.io/netperf
46. Grsecurity Project. 2017. https://grsecurity.net
47. Submitting patches: the essential guide to getting your code into the kernel. 2017. https://www.kernel.org/doc/html/v4.12/process/

submitting-patches.html
48. Cook K. codeblog: security things in Linux v4.13. 2017. https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/

How to cite this article: Reshetova E, Liljestrand H, Paverd A, Asokan N. Toward Linux kernel memory safety.
Softw Pract Exper. 2018;48:2237–2256. https://doi.org/10.1002/spe.2638

2256 RESHETOVA ET AL.

APPENDIX

Listing A1 Coccinelle pattern for finding reference counters in the Linux kernel [Colour figure can be viewed at wileyonlinelibrary.com]

Publication II

Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, Andrew Paverd.
Mitigating Branch-Shadowing Attacks on Intel SGX using Control Flow
Randomization. In Proceedings of the 3rd Workshop on System Software
for Trusted Execution, SysTEX ’18, Toronto, ON, Canada, pages 22–47,
October 2018.

© 2018 ACM
Reprinted with permission.

105

Mitigating Branch-Shadowing Attacks on Intel SGX
using Control Flow Randomization

Shohreh Hosseinzadeh∗

University of Turku, Finland
shohos@utu.fi

Hans Liljestrand∗

Aalto University, Finland
hans.liljestrand@aalto.fi

Ville Leppänen
University of Turku, Finland

ville.leppanen@utu.fi

Andrew Paverd
Aalto University, Finland
andrew.paverd@ieee.org

ABSTRACT
Intel Software Guard Extensions (SGX) is a promising hardware-
based technology for protecting sensitive computation from poten-
tially compromised system software. However, recent research has
shown that SGX is vulnerable to branch-shadowing – a side channel
attack that leaks the fine-grained (branch granularity) control flow
of an enclave (SGX protected code), potentially revealing sensitive
data to the attacker. The previously-proposed defense mechanism,
called Zigzagger, attempted to hide the control flow, but has been
shown to be ineffective if the attacker can single-step through the
enclave using the recent SGX-Step framework.

Taking into account these stronger attacker capabilities, we pro-
pose a new defense against branch-shadowing, based on control
flow randomization. Our scheme is inspired by Zigzagger, but pro-
vides quantifiable security guarantees with respect to a tunable
security parameter. Specifically, we eliminate conditional branches
and hide the targets of unconditional branches using a combination
of compile-time modifications and run-time code randomization.
We evaluated the performance of our approach using ten bench-
marks from SGX-Nbench. Although we considered the worst-case
scenario (whole program instrumentation), our results show that,
on average, our approach results in less than 18% performance loss
and less than 1.2 times code size increase.

KEYWORDS
Intel SGX; side-channel attack; branch-shadowing attack

ACM Reference Format:
Shohreh Hosseinzadeh, Hans Liljestrand∗, Ville Leppänen, and Andrew
Paverd. 2018. Mitigating Branch-Shadowing Attacks on Intel SGX, using
Control Flow Randomization. In 3rd Workshop on System Software for Trusted
Execution (SysTEX ’18), October 15, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3268935.3268940

∗S. Hosseinzadeh and H. Liljestrand contributed equally to this work, which was done
while S. Hosseinzadeh was visiting the Secure Systems Group at Aalto University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SysTEX ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5998-6/18/10. . . $15.00
https://doi.org/10.1145/3268935.3268940

1 INTRODUCTION
Intel Software Guard Extension (SGX)1 is a recent hardware-based
Trusted Execution Environment (TEE) providing isolated execution
and guaranteeing the integrity and confidentiality of data within
an enclave. The enclave is protected from all other software on
the platform, including potentially malicious system software (e.g.,
operating system, hypervisor, and BIOS). Additionally, SGX enables
hardware-based measurement and attestation of enclave code.

Although Intel has stated that side-channel attacks are beyond
the scope of SGX2, recent research has demonstrated that SGX is
susceptible to several side-channel attacks, which could leak secret
information. In particular, Lee et al. [10] demonstrated a branch-
shadowing side channel attack that allows untrusted software to
learn the precise control flow of code running inside an enclave.
If this control flow depends on any secret information, this side
channel would leak the secret information. This attack abuses the
CPU’s Branch Prediction Unit (BPU), which is used to improve
performance by allowing pipelining of instructions before exact
branching decisions are known, i.e., whether or not branches are
taken, and the targets of indirect branches. The BPU bases its deci-
sions on recent branch history, which is stored in the CPU’s internal
Branch Target Buffer (BTB). Two critical factors allow this attack
to proceed: 1) BTB entries created by branches inside the enclave
are not cleared when the enclave exits; and 2) BTB entries only
contain the lower 31 bits of the branch instruction’s address, allow-
ing the attacker to create shadow branch instructions outside the
enclave that map to the same BTB entries as the enclave’s branches.
The attacker executes the victim enclave, interrupts it immediately
after the branch instruction, executes the shadow branch code,
and checks whether the branches were correctly predicted, thus
revealing whether the BTB entry had been created by the enclave.

Lee et al. [10] also proposed a software-based defense against
branch-shadowing, called Zigzagger. Using compile-time instru-
mentation, Zigzagger converts all conditional and unconditional
branches into unconditional branches targeting Zigzagger’s tram-
polines, i.e., minimal code sections that hold intermediate jumps
— bounces — to the target locations. The Zigzagger trampolines
initiate a series of jumps back-and-forth to different branches. The
idea is that the attacker cannot interrupt the enclave with suffi-
cient precision to shadow the target branch in this rapid series
of jumps. However, SGX-Step [15] invalidates this assumption by

1https://software.intel.com/en-us/sgx
2https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

42

showing how an enclave can be interrupted with single instruction
granularity, thus breaking the Zigzagger defense.

The recent Spectre [9] attacks, and their subsequent SGX-specific
SGXPectre variant [4] are similar to branch-shadowing in that they
exploit the BPU. However, we have confirmed experimentally that
neither recent firmware patches, nor the Retpoline compiler-based
mitigation affect the ability to perform branch-shadowing attacks.

To overcome this challenge, we present a new defense against
branch-shadowing, even if the attacker can single-step through
the enclave. Similar to Zigzagger, we use compile-time modifica-
tions to convert all branch instructions into unconditional branches
targeting our in-enclave trampoline code. At run-time, we then ran-
domize the layout of our trampoline, forcing the attacker to shadow
all possible locations. The finite size of the BTB limits the number
of guesses the attacker can perform, and thus we can quantify and
limit the success probability of a branch-showing attack using the
size of the trampoline as a tunable security parameter.

Our contributions are therefore:
• Experimental analysis demonstrating that the recent Spectre

mitigation techniques do not affect the branch-shadowing attack
(Section 3).
• A new approach for defending against branch-shadowing attacks,

even in the presence of single-step enclave execution, using con-
trol flow randomization (Section 5).
• An initial LLVM implementation of our solution (Section 6)3

and a quantitative evaluation of its performance and security
guarantees (Section 7).

2 BACKGROUND
2.1 Branch Prediction
Intel CPUs use instruction pipelining to load and execute instruc-
tions in batches. This allows optimization such as parallelizing
and reordering of instructions. The CPU also performs speculative
execution, i.e., it uses the BPU to predict which branches will be
taken, and executes them before knowing if they are taken.4 In
modern microprocessors, the BPU typically consists of two main
subsystems, a BTB and a directional predictor.

The BTB is used to predict the targets of indirect branches.5
Whenever a branch is taken, a new record is created in the BTB
associating the branch instruction’s addresses with the target ad-
dress. Upon encountering subsequent branch instructions, the BPU
checks the BTB for the branch instruction address and, if an entry
exists, it predicts that the current branch instruction will behave in
the same way. The exact details of the BTB lookup algorithms, hash-
ing and size are not public, but the BTB size on Intel Skylake CPUs
has been experimentally determined to be 4096 entries [10]. The
directional predictor is used to predict whether or not a conditional
branch will be taken [5].

Multiple processes executing on the same core share the same
BPU, allowing an attacker to misuse the BPU across processes to
infer the target and direction of branch instructions [5, 10].

3Available online at https://github.com/SSGAalto/sgx-branch-shadowing-mitigation
4https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
optimization-reference-manual
5https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-
2abcd-3abcd.pdf

2.2 Intel SGX
Intel SGX is an instruction set extension that provides new instruc-
tions to instantiate Trusted Execution Environments (TEEs), called
enclaves, consisting of code and data. An enclave’s data can only
be accessed by code running within the enclave, thus protecting it
from all other software on the platform, including privileged system
software such as the OS or hypervisor. Enclave data is automatically
encrypted before it leaves the CPU boundary. However, the OS re-
mains in control of process scheduling and memory mapping, and
can therefore control the mapping of (encrypted) enclave memory
pages and interrupt enclave execution.

2.3 Branch-shadowing Attacks on SGX
In the branch-shadowing attack by Lee et al. [10], the attacker first
statically analyzes the unencrypted enclave code and enumerates
all branches (i.e., conditional, unconditional, and indirect) together
with their target addresses. She then creates shadow code where
the branch-instructions and target addresses are aligned such that
they will use the same BPU history entries. The attacker then
allows the enclave to execute briefly before interrupting it. Finally,
she enables the performance counter, in particular the Last Branch
Record (LBR), and executes the shadow code, prompting the CPU to
predict shadow-branch behavior based on prior enclave execution.
The LBR contains information on branch prediction but cannot
record in-enclave branches. However, the in-enclave branches can
be inferred from the LBR entries for the branches executed after
exiting the enclave. Unlike cache-based channels, this does not
require timing because the LBR directly reports prediction status.

2.4 Zigzagger and SGX-Step
Zigzagger [10] is presented as a software-based countermeasure to
thwart branch-shadowing attack. Zigzagger removes the branches
from the enclave functions by obfuscating and replacing a set of
branch instructions with a series of indirect jumps. Instead of each
conditional branching instruction, an indirect jump and a condi-
tional move (CMOV) is used. Zigzagger assumes that an attacker
cannot precisely time the enclave interrupts, i.e., a single probe will
cover over 50 instructions. It introduces a trampoline to exercise
all unconditional jumps before finally jumping to the final destina-
tion. The attacker will typically always detect the same set of taken
jumps (i.e., all the unconditional jumps) and cannot distinguish the
final jump from the decoy-jumps.

However, Van Bulck et al. [15] presented SGX-Step, a framework
consisting of a Linux kernel driver and runtime library that manipu-
lates the processor’s Advanced Programmable Interrupt Controller
(APIC) timer in order to interrupt an enclave after a single instruc-
tion i.e., to single-step the enclave’s execution. They show that this
makes the Zigzagger defense ineffective because the attacker can
distinguish meaningful jumps from decoys.

3 SPECTRE MITIGATION TECHNIQUES
The recent Spectre [9] and SGXPectre [4] attacks are similar to
branch-shadowing in that they abuse the BPU to exploit specu-
lative execution. Whereas branch-shadowing aims to infer prior
branching behavior, these attacks instead manipulate upcoming

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

43

branch prediction, e.g., cause speculative execution to touch oth-
erwise inaccessible memory. Although not designed to do so, we
suspected the new Spectre mitigation techniques could also affect
the branch-shadowing attacks. However, our testing indicates that
neither the recent firmware patches from Intel6, nor the compiler-
based Retpoline7 affect the ability to perform branch-shadowing
attacks against SGX.

In particular, we confirmed that Indirect Branch Restricted Specu-
lation (IBRS) — designed to prevent unprivileged code from affecting
speculation in privileged execution, e.g., within the enclave — has
no effect on branch-shadowing. In our tests we saw no difference
between an updated i7-7500U CPU and non-updated machines. We
speculate that this is because IBRS is specifically designed to pre-
vent low-privilege code from affecting high-privilege code. Whereas
branch-shadowing relies on high-privileged code affecting in sub-
sequent low-privilege code. The Retpoline defense replaces branch
instructions with return instructions but our tests indicate that
return statements affect the BTB, not only the dedicated Return
Stack Buffer (RSB). SGXPectre further demonstrated that Spectre
attacks can be performed against Retpoline.

4 THREAT MODEL AND REQUIREMENTS
We assume that the attacker has fine-grained control of enclave
execution, i.e., can interrupt the enclave with instruction-level ac-
curacy. The attacker can thus perform a branch-shadowing attack
against every branch instruction. Specifically, the attacker can de-
termine whether or not a branch instruction has been executed and
taken (i.e., whether a conditional jump fell through or not). If the
branching decisions depend on sensitive enclave data, the attacker
can infer this data through the branch-shadowing attack.

This is a significantly stronger attacker capability than that as-
sumed by previous work [10] because Van Bulck et al. [15] showed
that single-step execution of SGX enclaves is both feasible to imple-
ment and sufficient to break existing defenses like Zigzagger [10].
We focus on branch-shadowing attacks and do not consider other
side-channels, such as cache or page-fault attacks.

Given these attacker capabilities, we require a defence mecha-
nism that prevents fine-grained branch-shadowing from revealing
secret-dependent control flow. Specifically, in the instrumented
code, we require that:
R.1 Any branch that can be directly observed through branch shad-

owing reveals no secret-dependent control flow information.
R.2 For any secret-dependent branches, the attacker’s probability

of success is bounded based on a security parameter k.

5 PROPOSED APPROACH
Our mitigation scheme uses compile-time obfuscation and run-time
randomization to hide the control flow of an enclave application.
While our proposed method is inspired by and uses a similar ap-
proach to Zigzagger, we assume a stronger attacker model. Specifi-
cally, our approach can defend against branch-shadowing even in
the presence of an attacker with single-step capabilities.

6https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf
7https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf

Figure 1: System design

Figure 1 illustrates the high-level view of our approach. The
system consists of two main components: an obfuscating compiler
and a run-time randomizer. The obfuscating compiler modifies the
code by converting all branching instructions to indirect branches.
The indirect branch targets are then explicitly set by the instrumen-
tation depending on the converted branch type. We use conditional
moves as replacements for conditional branches, allowing us to
replicate the functionality of any conditional branch without in-
volving the BPU. The observable control flow transitions, i.e., non
trampoline branches, are further organized so that they are always
unconditionally executed in the same order. The key insight of our
approach is that, unlike Zigzagger, the trampolines are randomized
inside the enclave at run-time by the randomizer. This prevents
the attacker from reliably tracking their execution. Since only the
trampolines are randomized, all other code remains in execute-only
memory. Taken together, these two properties fulfill requirements
R.1 and R.2, as we show in our security evaluation in Section 7.

Listing 1 and Figure 2 show a single if-statement and corre-
sponding Control Flow Graph. The corresponding obfuscated CFG
is show in Figure 3. Figure 4 shows the same obfuscated code with
the branch instructions converted. The static code is produced at
compile time and its layout is assumed to be known to the attacker.
The trampoline is similarly produced at compile time but is then
randomized at run-time within the enclave. We assume that the
attacker can observe and shadow the static code whereas the tram-
poline is unknown. Specifically, our approach works as follows:

Branch conversion: All branching instructions are converted
to indirect unconditional branches. A register (r15) is reserved and
populated with the original branch targets, which are stored in
a jump-table that is updated during randomization. Conditional
branches are converted to conditional moves (cmov) (e.g., Block0
in Figure 4).

Jump blocks: Each block is followed by a jump-block that jumps
to a trampoline indicated by r15. Execution flows that do not in-
clude a specific block still go through any intermediate jump-blocks
to ensure that all indirect jumps outside the trampolines are exe-
cuted. For instance, when taking the if-clause (Block1), the else-
block (Block2) must not be executed but the corresponding jump-
block (B2J) must be (e.g., the blue line in Figure 4). This ensures
that an attacker always sees the same sequence of jumps (i.e., B0J,
B1J, and B2J), regardless of actual executed code.

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

44

Listing 1: Example code before instrumentation
i f (a ! = 0)

/ ∗ Block1 ∗ /
e l s e

/ ∗ Block2 ∗ /
/ ∗ Block3 ∗ /

Block 0

Block 1 Block 2

Block 3

a = 0a! = 0

Figure 2: Original control flow graph

Trampolines: The corresponding trampolines are created, cor-
responding to either the branching target or the fall-through block
(i.e., the next block that will be executed when a conditional branch
is not taken). In Figure 3, after execution of the if-block (Block1) the
control flow is transferred to tb2S that will jump to the following
jump-block B2J without executing the corresponding Block2 itself.

Skip blocks: When skipping a block — e.g., the else block after
taking the if block — we must nonetheless execute the correspond-
ing jump-block to prevent its omission from leaking information.
The jump-block target is prepared in the prior trampoline block
by setting r15. For instance, after executing the if-block the cor-
responding trampoline (tb2S) not only jumps to the correct jump-
block, but also sets the next target, tb3, into r15. To prevent timing
attacks that measure the number of instructions between jump-
blocks, the skipping trampolines (e.g., tb1S and tb2S) are populated
with dummy-instructions to ensure that the timing between each
jump-block is constant regardless of control flow. Although not
shown in our example code, nested blocks are treated similarly to
ensure that they execute all intermediary jumps.

Randomization: Trampolines are prepared during compilation,
and are randomized at run-time inside the enclave. The random-
ization is implemented such that shadowing it does not reveal the
randomization pattern. Randomizing the trampolines forces the
attacker to shadow all possible locations in the enclave and thus,
prevents shadowing the trampoline branches and reliably tracking
the program’s execution.

Re-randomization: Since an attacker could repeatedly call the
same enclave functionality to gradually determine the randomiza-
tion pattern, we can periodically re-randomize the trampolines. For
example, the trampolines could be re-randomized on each enclave
entry. As future work we envision to: a) provide code-annotation
for limiting the obfuscation to only developer-determined sensitive
parts, and b) randomize the trampoline code only when detecting
multiple enclave entries (i.e., after a given number of potential
shadowing attempts).

Block 0

B0J

tb1 tb1S

B1J

tb2S

Block 1

tb2

B2J

Block 2

Block 3

a != 0

a = 0a != 0

a = 0

Figure 3: Modified control flow graph

a! = 0
a = 0Block0: lea tb1, r15

cmp 0, a
lea tb1S, r14

B2J: jmp r15

B1J: jmp r15

B0J: jmp r15

Block1: <code1>

Block2: <code2>

Block3: <code3>

tb1: lea tb2S, r15
jmp Block1

tb3: jmp Block3

tb2S: lea tb3, r15
jmp B2J

tb1S: lea tb2, r15
jmp B1J

tb2: lea tb3, r15
jmp Block2

Static code Trampolines

cmov r14, r15

Figure 4: Modified code protected by our approach

6 IMPLEMENTATION DETAILS
We have implemented an open-source prototype of our approach,
based on LLVM 6.0 and implemented in the X86 target backend.
The instrumentation is applied by systematically traversing all func-
tions and modifying their branching instructions, as explained in
Section 5. Since the run-time randomization library cannot be ran-
domized, it must be resistant to branch-shadowing attacks. While
implemented, we have not yet integrated the randomizer to our in-
strumentation. For efficient and fine-grained randomization we do
not preform in-place randomization, instead, we move trampoline
entries between two trampoline areas. Listing 2 shows an overview
of our randomization algorithm. Detailed description is available
in our extended technical report [8].

We have also implemented an application for shadowing in-
enclave execution in a controlled manner. Our setup is similar
to [10] i.e., our application 1) retrieves branch instruction addresses

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

45

Listing 2: Randomization algorithm
for (e n t r y = 0 : j u m p _ t a b l e _ e n t r i e s) {

l o c a t i o n = rand () % t r a m p o l i n e _ s i z e ;
i f (f i t s (ent ry , l o c a t i o n))

mark_rese rved (l o c a t i o n , e n t r y) ;
e l s e

l = (l +1) % t r a m p o l i n e _ s i z e ;
move_entry (entry , l o c a t i o n) ;

}

and sets up a corresponding shadow-jump, 2) executes the victim
enclave function and returns, 3) enables performance counters
and executes the shadow-code, and 4) reads performance counters
to infer in-enclave execution. Our setup is such that it could be
integrated into the SGXStep-framework. We have replicated the
shadowing techniques shown by [10] and performed shadowing
on return statements.

7 EVALUATION
7.1 Security Analysis
As specified in Requirements (Section 4), we must prevent an at-
tacker from inferring the secret-dependent control flow by R.1)
ensuring that observable branches do not leak information, and
R.2) preventing the attacker from probing other branches with a
probability based on the security parameter k.

To hide any data-dependant branches (R.1), we replace all condi-
tional branches with unconditional branches. We further setup the
control flow so that each block in the static code section is executed
in the same order and on each function call. One limitation is that
we do not conceal the number of loop executions, because this
is typically unknown compile time. In some cases this could be
avoided by unrolling loops.

The remaining branching instructions are exclusively in the
trampolines, for which the locations are randomized to defend
against shadowing (R.2). Without knowing the exact trampoline
layout, the attacker is forced to guess or exhaustively probe all
possible locations. The probability of attack success (Pattack) is
given by Pattack =

G
k , where G is the number of guesses and k the

number of possible trampoline locations.
The upper limit for G is the number of BTB entries, but in prac-

tice this is lowered by any intermediate code (e.g., system calls
and attack setup) that pollutes the BTB. The security parameter
k determines the trampoline randomization space. Because X86
allows unaligned execution, a single 4KB range gives us up to 4091
potential trampoline locations (with a trampoline size starting at
5 bytes). With a randomization area of 8KB and 4096 BTB entries,
the success probability of shadowing a single branch has an upper
bound of 0.5. The probability of following the full control flow drops
exponentially as the number of targeted branches increase.

7.2 Performance Evaluation
We evaluated the overhead of our system in terms of CPU-utilization,
memory use, and code size. All software was compiled using the
SGX SDK version 2.0 and run on an SGX-enabled Intel Skylake Core

Table 1: Computational performance (iterations/second) be-
fore and after instrumentation, excluding randomization
and dummy instructions.

Benchmark Before
(std. dev.)

After
(std. dev.)

Performance
loss

Numeric sort 828.8 (0.79) 578.8 (0.21) 30%
String sort 86.59 (0.09) 67.72 (0.21) 21%
Bitfield 1.839e8 (1.34e5) 1.370e8 (3.27e5) 25%
Fp emulation 87.70 (0.11) 42.73 (0.02) 51%
Fourier 1.789e5 (1.19e2) 1.500e5 (1.50e2) 16%
Assignment 21.64 (0.03) 7.769 (0.01) 64%
Idea 2667 (1.26) 2665 (1.84) 0.1%
Huffman 2354 (4.07) 860.5 (0.71) 63%
Neural net 35.16 (0.03) 25.57 (0.22) 27%
Lu decomp 973.1 (1.45) 785.0 (1.41) 19%
Geometric mean 17.17%

i5-6500 CPU clocked at 3.20 GHz, with 7,6 GiB of RAM, running
Ubuntu 16.04 with a 64-bit Linux 4.4.0-96-generic kernel.

We used SGX-Nbench8 which is adapted from Nbench-byte-2.2.3,
to measure the CPU and memory overhead of 10 different bench-
marks executed within an enclave. All benchmarks were conducted
with full instrumentation, but do not include randomization or
dummy-instructions. Although the randomization would introduce
additional overhead, it need not be constantly repeated. Instead it
can be performed once on enclave creation and then later after a
specified number of enclave re-entries.

CPU overhead: Table 1 shows the computational performance
of various benchmarks in the enclave before and after obfuscation.
The decrease in performance (i.e., the number of iterations per
second) results from the addition of trampoline jumps and the need
to exhaustively execute all jump-blocks. However, since we have
obfuscated the entire program, these results represent the worst
case scenarios. In real deployments, only the parts of the code
that depend on secret data would be obfuscated. The performance
penalty depends on how complicated the function is in terms of size
and number of branches. The Assignment benchmark, for instance,
has functions with many nested conditional branches, all of which
require corresponding jump-blocks to be added and executed.

Memory overhead: As expected, our instrumentation does not
increase heap or stack usage of the enclave.

Code size: To measure the increase in code size, we compared
the size of the enclave object files before and after instrumentation.
The size of the SGX-Nbench object files increased from 329.1 kB to
370.1 kB after instrumentation. Similarly to performance overhead,
code size overhead will also decrease when instrumenting only the
secret-dependent sections of the code.

8 RELATED WORK
There is a growing body of research on side channel attacks target-
ing Intel SGX and corresponding countermeasures. In addition to
the branch-shadowing attacks [5, 10], there are other side channel
attacks targeting SGX enclaves [2, 7, 14, 16].

8https://github.com/utds3lab/sgx-nbench

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

46

Several approaches have been presented to thwart controlled-
channel (page-fault) attacks. SGX-Shield [11] randomizes the mem-
ory layout, similar to Address Space Layout Randomization (ASLR),
to prevent control flow hijacking and hide the enclave memory
layout. This approach impedes run-time attacks that exploit mem-
ory errors or attacks that rely on a known memory layout (e.g.,
controlled-channel attacks). SGX-Shield uses on-load randomiza-
tion, allowing repeated branch-shadowing attacks to gradually
reveal the randomization pattern. Our approach solves this through
run-time re-randomization. We further minimize the additional
attack-surface by limiting the randomization to the trampolines.

Shinde et al. [13] propose an approach that masks page-fault
patterns by making the program’s memory access pattern determin-
istic. More precisely, they alter the program such that it accesses
all its data and code pages in the same sequence, regardless of
the input. This makes the enclave application demonstrate the
same page-fault pattern for any secret input variables. T-SGX [12]
leverages Intel Transactional Synchronization Extensions (TSX)
to suppress encountered page-faults without invoking the under-
lying OS. Although T-SGX does not mitigate branch-shadowing
attacks [10], it could be combined with our approach to address
both branch-shadowing and page-fault attacks.

DR.SGX [1] is presented to defend against cache side-channel
attacks. It permutes data locations, and continuously re-randomizes
enclave data in order to hamper correlation of memory accesses.
This approach prevents leakages resulting from secret-dependant
data accesses. Similarly, Chandra et. al [3] inject dummy data in-
stances into the user-supplied data instances in order to add noise
to memory access traces. They randomize/shuffle the dummy data
with the user data to reduce the chance of extracting sensitive in-
formation from side-channels. Both approaches are similar to ours
in that they employ randomization, but they are not designed to
defend against branch shadowing attacks since they randomize
data memory locations rather than control flow.

CCFIR (Compact Control Flow Integrity and Randomization) [17]
is a new method proposed to impede control-flow hijacking attacks
(e.g., return-into-libc and ROP). CCFIR controls the indirect control
transfers and limits the possible jump location to a whitelist in a
Springboard. Randomizing the order of the stubs in the Springboard
adds an extra layer of protection and frustrates guessing of the
function pointers and return addresses. However, CCFIR has not
been designed for use in SGX enclaves.

Obfuscation techniques were previously used to thwart leakages
via side-channel attacks. Oblivious RAM (ORAM) [6] conceals the
program’s memory access pattern by shuffling and re-encrypting
the accessed data. However, the state should be stored/updated at
client-side, which makes it difficult to use for protecting cache since
it is challenging to store the internal state of ORAM securely with-
out hardware support, given the small size of cache lines. Moreover,
this approach incurs significant performance overhead.

None of the above countermeasures focus on mitigating branch-
shadowing attacks, and additionally, Lee et. al [10] have demon-
strated that their branch-shadowing attack is capable of breaking
the security constructs of SGX-Shield, T-SGX, and ORAM.

9 CONCLUSION AND FUTURE WORK
We propose a software-based mitigation scheme to defend against
branch-shadowing attacks, even in the presence of attackers with
the ability to single-step through SGX enclaves. Our approach
combines compile-time control flow obfuscation with run-time
code randomization to prevent the enclave program from leaking
secret-dependant control flow. We evaluated our approach using ten
benchmarks from SGX-Nbench. Although we considered the worst-
case scenario (whole program instrumentation), our results show
that, on average, our approach results in less than 18% performance
loss and less than 1.2 times code size increase.

As future work, we will integrate the randomizing component
and optimize our obfuscating compiler to reduce overhead. In ad-
dition, we plan to integrate our approach with other defences, in
order to mitigate a broader range of side-channel attacks.

ACKNOWLEDGMENTS
This work was supported in part by the Intel Collaborative Research
Institute for Collaborative Autonomous and Resilient Systems (ICRI-
CARS) at Aalto University.

REFERENCES
[1] F. Brasser et al. 2017. DR.SGX: Hardening SGX Enclaves against Cache Attacks

with Data Location Randomization. (2017). http://arxiv.org/abs/1709.09917
[2] F. Brasser et al. 2017. Software Grand Exposure: SGX Cache Attacks Are Practical.

In 11th USENIX Workshop on Offensive Technologies. https://www.usenix.org/
conference/woot17/workshop-program/presentation/brasser

[3] S. Chandra et al. 2017. Securing Data Analytics on SGX with Randomization. In
22nd European Symposium on Research in Computer Security. https://doi.org/10.
1007/978-3-319-66402-6_21

[4] G. Chen et al. 2018. SGXPECTRE Attacks: Leaking Enclave Secrets via Speculative
Execution. (2018). https://arxiv.org/abs/1802.09085

[5] D. Evtyushkin et al. 2018. BranchScope: A New Side-Channel Attack on Direc-
tional Branch Predictor. In 23rd International Conference on Architectural Support
for Programming Languages and Operating Systems. https://doi.org/10.1145/
3173162.3173204

[6] O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simulation on
Oblivious RAMs. J. ACM 43, 3 (1996), 431 – 473. https://doi.org/10.1145/233551.
233553

[7] J. Götzfried et al. 2017. Cache Attacks on Intel SGX. In 10th European Workshop
on Systems Security. https://doi.org/10.1145/3065913.3065915

[8] S. Hosseinzadeh et al. 2018. Mitigating Branch-Shadowing Attacks on Intel SGX
using Control Flow Randomization. (2018). https://arxiv.org/abs/1808.06478

[9] P. Kocher et al. 2018. Spectre Attacks: Exploiting Speculative Execution. (2018).
https://spectreattack.com/spectre.pdf

[10] S. Lee et al. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho

[11] J. Seo et al. 2017. SGX-Shield: Enabling address space layout randomization for
SGX programs. In Network and Distributed System Security Symposium. https:
//doi.org/10.14722/ndss.2017.23037

[12] M.-W. Shih et al. 2017. T-SGX: Eradicating controlled-channel attacks against
enclave programs. In Network and Distributed System Security Symposium. https:
//doi.org/10.14722/ndss.2017.23193

[13] S. Shinde et al. 2015. Preventing Your Faults From Telling Your Secrets: Defenses
Against Pigeonhole Attacks. (2015). http://arxiv.org/abs/1506.04832

[14] J. Van Bulck et al. 2017. Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution. In 26th USENIX Security
Symposium. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/van-bulck

[15] J. Van Bulck, F. Piessens, and R. Strackx. 2017. SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control. In 2nd Workshop on System
Software for Trusted Execution. https://doi.org/10.1145/3152701.3152706

[16] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In IEEE Symposium on Security
and Privacy. https://doi.org/10.1109/SP.2015.45

[17] C. Zhang et al. 2013. Practical Control Flow Integrity and Randomization for
Binary Executables. In IEEE Symposium on Security and Privacy. https://doi.org/
10.1109/SP.2013.44

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

47

Publication III

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea, Jan-Erik
Ekberg, N. Asokan. PAC it up: Towards Pointer Integrity using ARM Pointer
Authentication. In Proceedings of the 28th USENIX Security Symposium,
Santa Clara, CA, USA, pages 177–195, August 2019.

© 2019 Authors retain copyright
Reprinted with permission.

113

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication∗

Hans Liljestrand
Aalto University, Finland

Huawei Technologies Oy, Finland

hans.liljestrand@aalto.fi

Carlos Chinea Perez
Huawei Technologies Oy, Finland

carlos.chinea.perez@huawei.com

Thomas Nyman
Aalto University, Finland

thomas.nyman@aalto.fi

Jan-Erik Ekberg
Huawei Technologies Oy, Finland

Aalto University, Finland

jan.erik.ekberg@huawei.com

Kui Wang
Huawei Technologies Oy, Finland

Tampere University of Technology, Finland

wang.kui1@huawei.com

N. Asokan
Aalto University, Finland

asokan@acm.org

Abstract
Run-time attacks against programs written in memory-

unsafe programming languages (e.g., C and C++) remain a
prominent threat against computer systems. The prevalence
of techniques like return-oriented programming (ROP) in at-
tacking real-world systems has prompted major processor
manufacturers to design hardware-based countermeasures
against specific classes of run-time attacks. An example is
the recently added support for pointer authentication (PA)
in the ARMv8-A processor architecture, commonly used in
devices like smartphones. PA is a low-cost technique to au-
thenticate pointers so as to resist memory vulnerabilities. It
has been shown to enable practical protection against mem-
ory vulnerabilities that corrupt return addresses or function
pointers. However, so far, PA has received very little atten-
tion as a general purpose protection mechanism to harden
software against various classes of memory attacks.

In this paper, we use PA to build novel defenses
against various classes of run-time attacks, including the
first PA-based mechanism for data pointer integrity. We
present PARTS, an instrumentation framework that inte-
grates our PA-based defenses into the LLVM compiler and
the GNU/Linux operating system and show, via systematic
evaluation, that PARTS provides better protection than cur-
rent solutions at a reasonable performance overhead.

1 Introduction

Memory corruption vulnerabilities, such as buffer overflows,
continue to be a prominent threat against modern software
applications written in memory-unsafe programming lan-
guages, like C and C++. Theses vulnerabilities can be ex-
ploited to overwrite data in program memory. By over-
writing control data, such as code pointers and return ad-
dresses, attackers can redirect execution to attacker-chosen
locations. Return-oriented programming (ROP) [35] is a
well known technique that allows the attacker to leverage

Extended version of this article is available as a technical report [24].

corrupted control-data and pre-existing code sequences to
construct powerful (Turing-complete) attacks without the
need to inject code into the victim program. By over-
writing non-control data, such as variables used for deci-
sion making, attackers can also influence program behav-
ior without breaking the program’s control-flow integrity
(CFI) [1]. Such attacks can cause the program to leak sen-
sitive data or escalate attacker privileges. Recent work has
shown that non-control-data attacks can also be generalized
to achieve Turing-completeness. Such data-oriented pro-
gramming (DOP) attacks [16] are difficult to defend against,
and are an appealing attack technique for future run-time ex-
ploitation.

Software defenses against run-time attacks can offer
strong security guarantees, but their usefulness is limited by
high performance overhead, or requiring significant changes
to system software architecture. Consequently, deployed so-
lutions (e.g., Microsoft EMET [26]) trade off security for
performance. Various hardware-assisted defenses in the re-
search literature [15, 42, 41, 14, 38, 40, 28, 32] can dras-
tically improve the efficiency of attack detection, but the
majority of such defenses are unlikely to ever be deployed
as they require invasive changes to the underlying proces-
sor architecture. However, the prevalence of advanced at-
tack techniques (e.g, ROP) in modern run-time exploita-
tion has prompted major processor vendors to integrate se-
curity primitives into their processor designs to thwart spe-
cific attacks efficiently [17, 29, 31]. Recent additions to
the ARMv8-A architecture [3] include new instructions for
pointer authentication (PA). PA uses cryptographic message
authentication codes (MACs), referred to as pointer authen-
tication codes (PACs), to protect the integrity of pointers.
However, PA is vulnerable to pointer reuse attacks where an
authenticated pointer is substituted with another [31]. Practi-
cal PA-based defenses must minimize the scope of such sub-
stitution.

Goals and Contributions In this work, we further the
security analysis of ARMv8-A PA by categorizing pointer

USENIX Association 28th USENIX Security Symposium 177

reuse attacks, and show that PA enables practical defenses
against several classes of run-time attacks. We propose an
enhanced scheme for pointer signing that enforces pointer
integrity for all code and data pointers. We also propose run-
time type safety which constrains pointer substitution attacks
by ensuring the pointer is of the correct type. Pointer signing
and run-time type safety are effective against both control-
flow and data-oriented attacks. Finally, we design and im-
plement Pointer Authentication Run-Time Safety (PARTS),
a compiler instrumentation framework that leverages PA to
realize our proposed defenses. We evaluate the security
and practicality of PARTS to demonstrate its effectiveness
against memory corruption attacks. Our main contributions
are:
• Analysis: A categorization and analysis of pointer reuse

and other attacks against ARMv8-A pointer authentica-
tion (Section 3).
• Design: A scheme for using pointer integrity to system-

atically defend against control-flow and data-oriented
attacks, and run-time type safety, a scheme for guar-
anteeing safety for data and code pointers at run-time
(Section 5).
• Implementation: PARTS, a compiler instrumentation

framework that uses PA to realize data pointer, code
pointer, and return address signing (Section 6).
• Evaluation: Systematic analysis of PARTS showing

that it has a reasonable performance overhead (< 0.5%
average overhead for code-pointer and return address
signing, 19.5% average overhead for data-pointer sign-
ing in nbench-byte (Section 7)) and provides better se-
curity guarantees than fully-precise static CFI (9).

We make the source code of PARTS publicly available at
https://github.com/pointer-authentication.

2 Background

2.1 Run-time attacks
Programs written in memory-unsafe languages are prone
to memory errors like buffer-overflows, use-after-free er-
rors and format string vulnerabilities [39]. Traditional
approaches for exploiting such errors by corrupting pro-
gram code have been rendered largely ineffective by the
widespread deployment of measures like data execution pre-
vention (DEP). This has given rise to two new attack classes:
control-flow attacks and data-oriented attacks [11].

2.1.1 Control-flow attacks (on ARM)

Control-flow attacks exploit memory errors to hijack pro-
gram execution by overwriting code pointers (function return
addresses or function pointers). Corrupting a code pointer
can cause a control-flow transfer to anywhere in executable
memory. Corrupting the return address of a function can be

used for ROP attacks, which are feasible on several architec-
tures, including ARM [19].

ARM processors, similar to other RISC processor designs,
have a dedicated Link Register (LR) that stores the return ad-
dress. LR is typically set during a function call by the Branch
with Link (bl) instruction. An attacker cannot directly influ-
ence the value of LR, as it is unlikely for a program to con-
tain instructions for directly modifying it. However, nested
function calls require the return address of a function to be
stored on the stack before the next function call replaces the
LR value. While the return address is stored on the stack, an
attacker can use a memory error to modify it to subsequently
redirect the control flow on function return. On both x86 and
ARM, it is possible to perform ROP attacks without the use
of return instructions. Such attacks are collectively referred
to as jump-oriented programming (JOP) [9].

Control-flow integrity (CFI) [1] is a prominent defense
technique against control-flow attacks. The goal of CFI is
to allow all the control flows present in a program’s control-
flow graph (CFG), while rejecting other flows. Widely de-
ployed CFI solutions are less precise than state-of-the-art so-
lutions presented in scientific literature.

2.1.2 Data-oriented attacks

In contrast to control-flow attacks, data-oriented attacks
can influence program behavior without the need to mod-
ify code pointers. Instead, they corrupt variables that in-
fluence the program’s decision making, or leak sensitive in-
formation from program memory. Such attacks are called
non-control-data attacks. Chen et al [11] demonstrated a
variety of non-control-data attacks for forging user creden-
tials, changing security critical configuration parameters, by-
passing security checks, and escalating privileges. Recent
work on DOP [16] showed that non-control-data corruption
can also enable expressive attacks without compromising
control-flow integrity. DOP may compromise the input of
individual program operations and chain together a chosen
sequence of operations to achieve the intended functionality.

A data-oriented attack can in principle corrupt arbitrary
program objects, but corrupting data pointers is often the pre-
ferred attack vector [12]. In Chen et al.’s attack against the
GHTTPD web server [11], a stack buffer overflow is used to
corrupt a data pointer used in input string validation in order
to bypass security checks on the input under the attacker’s
control. Data pointers are also routinely corrupted in heap
exploitation. For instance, the “House of Spirit” attack on
Glibc1, involves corrupting a pointer returned by malloc()
to trick subsequent malloc() calls into returning attacker
controlled memory chunks. The DOP attacks in [16] also in-
volve the corruption of pointers as a means to control which
data is processed by vulnerable code.

1Team Shellphish repository of educational heap exploitation tech-
niques: https://github.com/shellphish/how2heap

178 28th USENIX Security Symposium USENIX Association

address

PACPAC address

Pointer

Pointer

pacia pointer, modifier;

keyed-MACPA-key

Figure 1: The PAC is created using key-specific PA in-
structions (pacia) and is a keyed MAC calculated over the
pointer address and a modifier.

2.2 ARM Pointer Authentication

ARMv8.3-A includes a new feature called pointer authen-
tication (PA). PA is intended for checking the integrity of
pointers with minimal size and performance impact. It is
available when the processor executes in 64-bit ARM state
(AArch64). PA adds instructions for creating and authen-
ticating pointer authentication codes (PACs). The PAC is
a tweakable message authentication code (MAC) calculated
over the pointer value and a 64-bit modifier as the tweak
(Figure 1). Different combinations of key and modifier pairs
allow domain separation among different classes of authen-
ticated pointers. This prevents authenticated pointer values
from being arbitrarily interchangeable with one another.

The idea of using of MACs to protect pointers at run-time
is not new. Cryptographic CFI (CCFI) [25] uses MACs to
protect control-flow data such as return addresses, function
pointers, and vtable pointers. Unlike ARMv8-A PA, CCFI
uses hardware-accelerated AES for speeding up MAC calcu-
lation. Run-time software checks are needed to compare the
calculated MAC to a reference value. PA, on the other hand,
uses either QARMA [5] or a manufacturer-specific MAC,
and performs the MAC comparison in hardware.

64-bit ARM processors only use part of the 64-bit address
space for virtual addresses (Figure 2). The PAC is stored
in the remaining unused bits of the pointer. On a default
AArch64 Linux kernel configuration with 39 bit addresses
and without address tagging [3, D4.1.4], the PAC size is 24
bits. However, depending on the memory addressing scheme
and whether address tagging is used, the size of the PAC is
between 3 and 31 bits [31]. Security implications of the PAC
size are discussed in Section 9.

PA provides five different keys for PAC generation: two
for code pointers, two for data pointers, and one for generic
use. The keys are stored in hardware registers configured
to be accessible only from a higher privilege level: e.g., the
kernel maintains the keys for a user space process, generat-
ing keys for each process at process exec. The keys remain
constant throughout the process lifetime, whereas the mod-
ifier is given in an instruction-specific register operand on
each PAC creation and authentication (i.e., MAC verifica-
tion). Thus it can be used to describe the run-time context in

0va_size5563

addresstag / reserved reserved

PACPAC

upper/lower bit

Figure 2: Pointer layout on 64-bit ARM. The PAC is stored
in the reserved bits, and its size depends on the used virtual
address range. If pointer tagging is disabled, then the PAC
can also extend to the tag bits.

which the pointer is created and used. The modifier value is
not necessarily confidential (see Section 4) but ideally such
that it 1) precisely describes the context of use in which the
pointer is valid, and 2) cannot be influenced by the attacker.

PA is used by instrumenting code with PAC creation and
authentication instructions. PA instruction mnemonics are
generally prefixed either with pac or aut for creation and
authentication, respectively, followed by two characters that
select one of the data or code keys. For instance, the pacia
instruction in Figure 1 will generate an authenticated pointer
(pac) based on the instruction (i) A-key (a). Table 5 in Ap-
pendix C provides a list of PA instructions referred to in
this paper. An authenticated pointer cannot be used directly,
as the PAC embedded in the pointer value intentionally inter-
feres with address translation. The corresponding PA authen-
tication instruction (in this case, autia) removes the PAC
from the pointer if authentication is successful, i.e., if the
current pointer value, key and modifier for autia yields a
PAC that matches the PAC embedded in the pointer. If au-
thentication fails, the pointer is invalidated such that a deref-
erence or call using the pointer will cause a memory trans-
lation fault. Dedicated PA instructions are encoded in NOP
space; older processors without PA support will ignore them.

Return address signing. Qualcomm’s return address sign-
ing scheme [31] is the first to make use of ARMv8-A PA. It
was first introduced in Linaro’s GCC toolchain, but has been
supported by mainline GCC since version 7.02. It thwarts at-
tacks that manipulate function return addresses through stack
corruption (see Section 2.1.1) by ensuring that the return ad-
dress in LR always contains a PAC when written to or re-
trieved from memory. Listing 1 shows an example.

The instrumentation adds paciasp (À) at beginning of the
function prologue, before the LR value is stored on the stack.
paciasp adds a PAC tag using the current Stack Pointer (SP)
value as the modifier. Before function return, autiasp (Á)
authenticates the pointer and either removes the PAC or in-
validates the pointer. An alternative is to use the combined
autiasp+ret instruction, retaa, but it is not backwards-
compatible with older processors.

2GCC return address signing and PA support is based on patches
provided by ARM, https://github.com/gcc-mirror/gcc/commit/
06f29de13f48f7da8a8c616108f4e14a1d19b2c8

USENIX Association 28th USENIX Security Symposium 179

f u n c t i o n :
pac iasp ; À c r e a t e PAC
s t p FP , LR , [SP , #0] ; s t o r e LR
; . . .
ldp FP , LR , [SP , #0] ; l oad LR
a u t i a s p ; Á a u t h e n t i c a t e
r e t ; r e t u r n

Listing 1: Return address signing using PA. At funtion entry,
paciasp is used to create a PAC in LR (À). The value is then
authenticated with autiasp before return (Á).

The PAC cryptographically binds the return address to the
current SP value. It is valid only when authenticated using
the same SP value as on PAC creation. The goal is to limit
the validity of the PAC to the function invocation that created
it, thus preventing reuse of authenticated return addresses.

3 Attacks on Pointer Authentication

PA prevents an attacker from injecting or forging pointer val-
ues. This effectively prevents any attack that relies on cor-
rupting pointers, resisting even attackers with arbitrary ac-
cess to program memory.

The modifier value used in computing a PAC can depend
on both static (e.g., a hard-coded value) and dynamic (e.g.,
the SP) information. We assume that the program code it-
self is not confidential and that the attacker can learn how
dynamic modifiers are generated and may infer their values.

PA also relies on the security of the underlying crypto-
graphic primitives. In particular, an attacker may attempt
to brute-force either the PA keys themselves, or individual
PAC values. Sophisticated adversaries may even attempt
cryptanalysis attacks based on known PAC values, or side-
channels attacks against the hardware circuitry for comput-
ing PACs. The security of the QARMA block cipher has
already been analyzed [43, 23]. We leave the scrutiny of the
cryptographic building blocks outside the scope of this pa-
per. Nevertheless, the limited PAC size means that guessing
attacks are a potential concern. We discuss the feasibility of
brute-forcing PACs in Section 7.2.4. Assuming proper pre-
cautions for the lifetime of PA keys (see Section 2.2), we
do not consider guessing attacks the primary attack vector
against PA. However, the following concerns for the security
of PA-based defenses remain: 1) an attacker controlling the
creation of PAC values, or 2) an attacker reusing previously
authenticated pointers.

Malicious PAC generation. Attackers can potentially
control PAC values in three ways, by controlling:

1. the unauthenticated pointer value before PAC creation:
get an arbitrary authenticated pointer for any context
with the same modifier and PA key.

2. control the PA modifier value: get an authenticated
pointer for a context with the same PA key, but with
an attacker-chosen modifier.

3. both: get arbitrary authenticated pointers for a context
with attacker-chosen modifier, and the same PA key.

To prevent the attacker from generating arbitrary authen-
ticated pointers, the program must not contain PA creation
instructions with attacker controlled inputs. Also, a control-
flow attack could be mounted by chaining together instruc-
tion sequences to prepare the PA operand registers with at-
tacker controlled input and then jump to a PA instruction at
another part of the program. This suggests that PA-based de-
fenses must provide, or be combined with, CFI guarantees
that prevent the use of individual authentication instructions
as attacker-controlled gadgets.

Reuse attacks. The attacker can read authenticated point-
ers (including PAC values), and later reuse them to either:

• rollback an authenticated pointer to a previous value, or
• substitute an authenticated pointer with another using

the same PA modifier.

For instance, in GCC’s return address signing scheme
(Section 2.2), the return address is bound to the location
of the stack frame by using the current SP value as the PA
modifier. However, the SP value is not necessarily unique
to a specific function invocation. Consequently, an attacker
can reuse the authenticated return addresses value from one
function when a different vulnerable function executes with
a matching SP value. Given that typical programs offer no
guarantees on the uniqueness of SP values between different
function invocations, this approach exposes a large attack
surface for pointer reuse attacks. Therefore, a concern for
any PA-based defense is partitioning authenticated pointers
into distinct classes based on different <PA key, modifier>
pairs.

Attackers can reuse only those pointers they can observe
(as opposed all possible values a function pointer can take).
Even with full read access to memory (and hence the ability
to observe any pointer value that has been generated so far),
attackers are still limited to authenticated pointer values the
program has already generated.

4 Adversary Model and Requirements

4.1 Pointer Integrity

Kuznetsov et al. [21] introduced the idea of code pointer in-
tegrity: ensuring precise memory safety for all code point-
ers in a program. Since control-flow attacks depend on the

180 28th USENIX Security Symposium USENIX Association

manipulation of code pointers, guaranteeing code pointer in-
tegrity will render all control-flow attacks impossible [21].

The notion of pointer integrity is generalizable to both
code and data pointers. In Section 9.1, we provide a more
rigorous definition of pointer integrity. Intuitively, pointer
integrity aims to prevent unintentional changes to pointers
while they remain in program memory so that the value of a
pointer at the time it is “used” (e.g., dereferenced or loaded
from memory) is the same as when it was created or stored on
memory. In particular, integrity-protected pointers reference
the intended target objects. As explained in Section 2.1, all
control-flow attacks, all known DOP attacks and many other
data-oriented attacks rely on the manipulation of vulnerable
pointers. Consequently, ensuring pointer integrity will pre-
vent these attacks.

4.2 Attacker Capabilities

To reason about how effectively PA defends against state-
of-the-art attacks we assume attacker capabilities consistent
with prior work on run-time attacks (Section 2.1). Our adver-
sary model assumes a powerful attacker with arbitrary mem-
ory read and write capabilities restricted only by DEP. The
attacker can thus read any program memory and write to non-
code segments. We further assume that the attacker has no
control of higher privilege levels, i.e., an attacker targeting a
user space process cannot access the kernel or higher privi-
lege levels. Specifically, we assume that the attacker cannot
infer the PA keys, as they are in registers not directly read-
able from user space (Section 2.2). We discuss protection of
kernel code using PA in Section 10. The attacker’s ability to
read arbitrary memory precludes the use of randomization-
based defenses that cannot withstand information disclosure
(e.g., address space layout randomization [36] or software
shadow-stacks [1]). PA was specifically designed to remain
effective even when the entire memory layout of the victim
process is known.

4.3 Goal and Requirements

Our goal is to thwart control-flow and data-oriented attacks
by preventing the attacker from forging pointers used by a
vulnerable program. We identify the following requirements
that our solution should satisfy:

R1 Pointer Integrity: Detect/prevent the use of corrupted
code and data pointers.

R2 PA-attack resistance: Resist attempts to control PAC
generation, and pointer reuse attacks.

R3 Compatibility: Allow protection of existing programs
without interfering with their normal operation.

R4 Performance: Minimize run-time and memory over-
head and gracefully scale in relation to the number of
protected pointers and dereferences/calls.

5 Design

To meet our requirements (Section 4.3) we must solve a
number of challenges which we elaborate below.

5.1 Instrument program with PA instructions

To meet requirement R1 , the program executable must be
instrumented with PA instructions to create and authenticate
PACs when needed. For this, we designed and implemented
Pointer Authentication Run-Time Safety (PARTS), a com-
piler enhancement that emits PA instructions to sign pointers
in memory as required. Specifically, it protects:

• return addresses;
• local, global and static pointers; and
• pointers in C structures.

Figure 3 shows the overall architecture of the PARTS-
enhanced compiler. PARTS analyzes the compiler’s inter-
mediate representation (IR) to identify any pointers used by
the program and then emits PA instructions at points in the
program where pointers are (a) created or stored in memory,
and (b) loaded from memory or used.

5.2 Create PACs in statically allocated data

Programs may contain pointers which are initialized by the
compiler, e.g., defined global variables. However, PAC val-
ues for authenticated pointers cannot be calculated before
program execution, as PA keys are set only at program
launch. Consequently, initialized pointers in the program’s
data segment pose a challenge, as their values are normally
initialized by the linker and loaded into memory separately.
PARTS solves this problem by generating a custom initial-
izer function for pointers requiring PACs. At run-time, the
PARTS runtime library, PARTSlib, processes the relocated
variables and invokes the generated initializer function to en-
sure that any defined pointers are furnished with a PAC.

5.3 Pointer compartmentalization

As described in Section 3 the attacker may attempt to
reuse previously signed pointers. To meet requirement R2
PARTS therefore limits the scope of such reuse attacks
by compartmentalizing pointers in three different ways, as
shown in Table 1.
Code / Data Pointer Compartmentalization: Recall from
Section 2.2, that PA provides separate key sets for data and
code pointers making it possible to limit reuse attacks.

USENIX Association 28th USENIX Security Symposium 181

Table 1: For code and data pointers PARTS uses a static PA modifier based on the pointer’s ElementType as defined by LLVM.
Return address signing uses a 48-bit function-id and the 16 most-significant bits of the SP value.

key Modifier type Modifier construction

À Data pointer signing Data A static type-id = SHA3(ElementType)
Á Code pointer signing Instr A static type-id = SHA3(ElementType)
Â Return address signing Instr B dynamic + static SP | function-id = compile-time nonce

Run-time type safety: Pointer compartmentalization, while
effective, is coarse-grained. To address this, PARTS adds
run-time type safety for data and code pointers. Run-time
type safety records the pointer’s type by encoding it in the
PA modifier. Then, it checks that pointer dereferences or in-
direct calls take place using a pointer with a recorded type
that matches the type expected at the use site. PARTS as-
signs pointers a unique id, type-id, based on the pointer’s
LLVM ElementType which depends on the pointed-to data,
structure, or function signature. Two pointers are compatible
(have the same type-id) if their ElementType is the same.
PARTS uses a deterministic scheme, detailed in Section 6.1
and shown in Table 1, to calculate type-ids during compi-
lation. This ensures that separate compilation units generate
equivalent type-ids for compatible objects, and different
type-ids for non-compatible ones.
Improved Return Address Signing: While run-time type
safety could also be applied for return addresses, it would
result in an over-permissive policy for backward edges. As
described in Section 3, binding the authenticated return ad-
dress to the current stack pointer value alone is insufficient
because the stack pointer may not be unique to a specific
function invocation. Instead, PARTS uses a combination of
the current stack pointer value, and a compile-time nonce
(function-id) ensuring that the authenticated return ad-
dress cannot be reused across invocations of different func-
tions, while the stack pointer values effectively compartmen-
talizes return addresses to callers with different stack layouts.

5.4 On-load data pointer authentication
Pointers with PACs can be authenticated either as they are
loaded from memory, or immediately before they are used.
We refer to these as on-load and on-use authentication, re-
spectively. Data pointers are often dereferenced frequently
without intervening function calls, i.e., they will not be
cleared after use. This allows the compiler to optimize mem-
ory accesses such that, for instance, temporary values might
never be written to memory. PARTS accommodates this be-
havior by only using on-load authentication for data point-
ers. The combined PA instructions can be used for on-use
authentication of code pointers, which are typically loaded
to a register, used once, and cleared. On-load authentication
always uses the standalone authentication instructions. An

attacker could attempt to exploit either the standalone au-
thentication or the separate pointer dereference by diverting
control flow to either. However, as mentioned in Section 3,
PA solutions must be combined with CFI guarantees, which
prevent this type of attacks.

5.5 Handling pointer conversions
A data pointer to an object of a specific type may be con-
verted to a pointer to a different object type. When run-time
type safety is applied to authenticated pointers, special care
must be taken to not interfere with legitimate pointer con-
versions to meet requirement R3 . For instance, if a struct
pointer is cast to a pointer to its first field, it will change the
type-id and hence the expected PAC.

If the source and destination object types are compatible,
no special consideration is needed. If not, PARTS must con-
vert the authenticated pointer to the correct type-id. Be-
cause data pointer PAC creation and authentication is done
at store/load, PARTS handles conversions by; (a) if loading
the pointer from memory, validating and stripping the PAC
using the type-id of the original object, and (b) on store,
creating a new PAC using the destination object type-id.

A pointer to a function of one type may be converted to a
pointer to a function of another type. However, the behav-
ior when calling a function pointer cast to a non-compatible
type is undefined [18][6.3.2.3§8]. Hence, PARTS does not
need to convert the pointer’s PAC to match the destination
function’s type-id. If the converted pointer is converted
back, the result is expected to be the same as the original
pointer [18][6.3.2.3§8]. PARTS satisfies this as it does not
modify the pointer’s PAC.

6 Implementation

The PARTS compiler is based on LLVM 6.0 but modifies
and adds new passes to the optimizer and the AArch64 back-
end (Figure 3). The optimization passes (¶) generate neces-
sary metadata for PA modifiers, inserts wrappers for com-
patibility with legacy code, and prepares initializers for stat-
ically allocated pointers. The AArch64 Frame Lowering
emits function prologues and epilogues and is modified to
include instructions for authenticating the LR value (·). The

182 28th USENIX Security Symposium USENIX Association

executable

Clang Frontend

LL
V

M

 PARTS opt-passes

source code
o

p
t

LL
V

M
 IR

b
ac

ke
n

d

M
ac

h
in

e
IR

 AArch64 modifications

 PARTS backend-passes

PARTSlib
new component

LLVM internal

Figure 3: PARTS architecture.

PARTS backend passes (¸) retrieve the PA modifiers and in-
struments appropriate low-level instructions. The resulting
binary is linked with PARTSlib (¹), which at run-time cre-
ates PACs for the initialized pointers.

6.1 LLVM Compiler Integration
While the LLVM 6.0 AArch64 backend recognizes PA in-
structions, they are not used by any pre-existing security fea-
ture. Our modifications consist of added optimizer and back-
end passes, minor modifications to the AArch64 backend,
and new PARTS-specific intrinsics. Where applicable, we
use optimizer passes that operate on the high-level LLVM
intermediate representation (IR). Nonetheless, much of the
needed functionality is PA-specific and thus implemented in
the backend that uses low-level LLVM machine IR (MIR),
and a register- and instruction set specific to 64-bit ARM.

Determining pointer type-id. The compiler backend
views the program from a low-level perspective, and the MIR
has lost much of the semantics present in C or the high-level
IR. Therefore, PARTS must determine type-ids during
its optimizer passes where this information is still available
(Figure 3, ¶). The type-id for data consists of a truncated
64-bit SHA-3 hash of the pointer’s LLVM ElementType.
The ElementType represents the IR level data type and
distinguishes between basic data types, but does not re-
tain typedef or other information from the frontend (i.e.,
clang). Code pointers use the same scheme wherein the
ElementType consists of the function signature at the same
abstraction level. The type-ids are passed to the backend
either via PARTS-specific compiler intrinsics, or by embed-
ding them as metadata in the existing IR instructions. The

AArch64 instruction selection retrieves the information from
the IR instructions and transfers it to the emitted MIR (Fig-
ure 3, ·). To facilitate the run-time bootstrap (Section 6.2)
PARTS also includes a pass that prepares a custom initial-
izer function that is called at run-time to generate PACs for
defined global pointers (Figure 3, ¶).

Return addresses signing. Return address signing is im-
plemented in the AArch64 backend during frame lowering
(Figure 3, ·). Frame lowering emits the function prologues
and epilogues, and for non-leaf functions, emits instruc-
tions for storing and retrieving the LR value from the stack.
PARTS authenticates the value of the LR only if it was re-
trieved from the stack. The PAC modifier is based on the 16
least-significant bits of the SP value and a 48-bit function-
specific function-id. The function-id is guaranteed to
be unique within the current compilation unit or, with link
time optimization (LTO), the whole program. To avoid rep-
etition across different compilation units, the function-id
is generated using a pseudorandom, non-repetitive sequence.

Code pointer signing. PARTS uses the combined PA in-
structions for branches and converts branch instructions di-
rectly to their PA variants (Figure 3, ¸). The PAC for any
code pointer is created only once at the time of pointer cre-
ation, e.g., when the address of a function is taken. This is
instrumented by adding a PAC-creation instruction immedi-
ately after the instruction that moves a code pointer to a regis-
ter. Subsequent load and store operations do not authenticate
the signed code pointers, instead they are authenticated only
on use.

Data pointer signing. As discussed in Section 5.4, it is
not feasible to perform on-use authentication for data point-
ers. Instead, we authenticate data pointers when they are
loaded from memory and create PACs before storing them.
In some cases, e.g., using globals, the IR will include ex-
plicit load and store operations that can be furnished with the
type-id. Our modified Instruction Selection then forwards
the type-id to the emitted MIR (Figure 3, ·). However,
stack-based store and load operations, in particular, are often
not present before the backend finalizes the stack-layout and
register allocation. Thus, some load and store instructions
must be instrumented solely in the backend.

While it would be possible to modify the AArch64 back-
end (e.g., register allocation), we have instead opted for a less
invasive approach. The PARTS backend pass (Figure 3, ¸)
finds load and store instructions in the MIR, and uses the
attached type-id for instrumentation. When the type-id
is not present, e.g., because the load and store is a register
spill, the type-id is fetched from surrounding code. For in-
stance, when instrumenting the store due to register spilling

USENIX Association 28th USENIX Security Symposium 183

MACRO movFunc t ionId Mod
movk Mod , # func_ id16 , l s l #16
movk Mod , # func_ id32 , l s l #32
movk Mod , # func_ id48 , l s l #48

ENDM

f u n c t i o n :
mov Xd , SP ; À g e t SP
movFunc t ionId Xd ; Á g e t i d
pacib LR , Xd ; Â PAC
s t p FP , LR , [SP , #0] ; s t o r e
; f u n c t i o n body
ldp FP , LR , [SP , #0] ; l oad LR
mov Xd , SP ; Ä g e t SP
movFunc t ionId Xd ; Ã g e t i d
a u t i b LR , X ; Å au th
r e t

Listing 2: The PARTS return address signing binds the PAC
to the SP (À,Ä) and unique function id (Á,Ã). The PA modi-
fier is in register Xd during PAC creation (Â) and authentica-
tion (Å). The 48-bit func-id is split into three 16-bit parts,
each moved individually to Xd by left-shifting.

MACRO movTypeId Mod
mov Mod , # t y p e _ i d 0 0
movk Mod , # t y p e _ i d 1 6 , l s l #16
movk Mod , # t y p e _ i d 3 2 , l s l #32
movk Mod , # t y p e _ i d 4 8 , l s l #48

ENDM

mov c P t r , # i n s t r _ a d d r ; l oad c P t r
movTypeId Xd ; ¶ g e t i d
pac ia c P t r , Xd ; · PAC
; no i n t e r m e d i a t e c P t r i n s t r u m e n t a t i o n
movTypeId Xd ; ¸ g e t i d
blraa c P t r , Xd ; ¹ branch

Listing 3: The PARTS forward-edge code pointer signing
uses the code pointer’s type-id as the PA modifier (¶,¸).
The 64-bit type-id is split into four 16-bit parts. The
PAC is created only once when initially creating the code
pointer (·). Upon use, i.e., indirect call, the PAC is authen-
ticated using the combined branch and authenticated instruc-
tion (¹). PARTS does not instrument intermediate store/load
operations.

a pointer variable, the correct type-id can be fetched from
the original load.

6.2 Run-time Bootstrap

Programs may contain pointers in statically allocated data,
i.e., pointers stored in global variables or static local vari-
ables. These are initialized by the compiler or linker, and
therefore cannot include PACs. The PARTSlib runtime li-
brary instead invokes the compiler generated custom PAC
initializer function at process startup. Our Proof-of-Concept
implementation invokes the PARTSlib bootstrap using com-
piler instrumentation that explicitly calls the functionality
when entering main.

6.3 Instrumentation

PARTS uses only in-line instrumentation and does not re-
quire storage of separate run-time metadata. With the ex-
ception of the bootstrap process the original code structure
is thus largely unchanged. As discussed in Section 2.2, no
explicit error handling is added by PARTS; instead, an au-
thentication failure will set specific high-order bits in the
pointer, thus triggering a memory translation fault on sub-
sequent dereference or call using the pointer that failed au-
thentication. The high-order bits ensure that the fault is dis-
tinguishable as one caused by authentication failure. Our
code listings use two macros for setting up PA modifiers for

return address signing and type-id based PACs, these are
shown in Listing 2 and Listing 3.

Return address signing. The return address signing in-
strumentation is similar to GCC’s implementation [31] but
includes an added modifier (Listing 2). The function pro-
logue is instrumented such that it prepares the PA modifier
by moving SP (À) value into a free register. The SP value is
combined with the function-id (Á) to form the PA modi-
fier, which is then used with the instruction B key (Â). The
function-id is generated at compile-time using LLVM’s
random number generator, and is guaranteed to be unique
withing the LLVM Module (i.e., the whole program, when
using link time optimization). The function epilogues (i.e.,
any part that ends with a return or a tail-call) are similarly
instrumented to generate the same PA modifier (Ã,Ä) and to
verify the PAC in the restored LR (Å).

Code pointer signing. PARTS instruments code pointers
only on creation and use (Listing 3). Specifically, when
a code pointer is initially created, PARTS will use the in-
struction A-key to create a PAC (·) based on the target
type-id (¶). The instrumentation will at no point re-
move the PAC from a code pointer. Instead, PARTS uses
the combined authenticate and branch instructions — e.g.,
blraa — to perform the branch directly on an authenticated
pointer (¹), again using the same PA modifier (¸).

184 28th USENIX Security Symposium USENIX Association

l d r dP t r , [SP , #0] ; l oad dP t r
movTypeId Xd , # t y p e _ i d ; À g e t i d
autda dP t r , Xd ; Á a u t h e n t i c a t e
; dP t r i s d i r e c t l y u s a b l e

Listing 4: PARTS immediately authenticates data pointers
loaded from writeable memory. This is done by first loading
the type-id (À) and then verifying the PAC (Á).

Data pointer signing. All data pointer stores and loads are
instrumented such that a PAC is created immediate before
store and authenticated immediately after load (Listing 4).
When a data-pointer is used the instrumentation first sets up
the correct PA modifier, i.e., the type-id (À). The pointer is
then immediately authenticated using the modifier and data
A-key (Á); this also strips the PAC from the pointer. As long
as the data pointer resides in a register it can thus be used
without any performance overhead. PARTS creates PACs for
pointers immediately before store in the same manner, save
for the pacda instruction.

7 Evaluation

We develop our Proof-of-Concept implementation of PARTS
on the ARMv8-A Base Platform Fixed Virtual Platform
(FVP), based on Fast Models 11.4, which supports version
8.0 to 8.4 of the ARMv8-A architecture [4]. At the time of
writing, the only PA-capable hardware is the Apple A12 and
S4 SoCs featuring ARMv8.3-A CPUs [2]. However, these
proprietary SoCs are, to the best of our knowledge, not avail-
able in development versions outside Apple. The FVP pro-
vides a software simulation of an ARMv8.3-A processor in
AArch64 mode, and is, to the best of our knowledge, the only
publicly available environment with ARMv8-A PA support.

7.1 ARMv8.3 Emulation and Software Stack

We use GNU/Linux with a 4.14 kernel, modified to sup-
port PA . We modified the bootloader and kernel to acti-
vate ARMv8-A PA, and allow key configuration during ker-
nel scheduling at Exception Level 1 (EL1 in Figure 4). Our
kernel modifications are based on Mark Rutland’s 2018 PA
patches3.

PA keys for each task are stored in a process-specific
mm_context_t structure (in the process’ memory descrip-
tor in the kernel) which contains architecture-specific data
related to the process address space. Threads within the same
process have a common memory descriptor, and thus share
the same PA keys. The scheduler will configure the PA key
registers using the keys in the process’ memory descriptor

3https://lwn.net/Articles/752116/

EL1 - Kernel

binary with
PARTS

EL3 - ARM trusted FW

EL
0

 –
u

se
r

sp
ac

e

mm_context_t (1/task)

key reg. bank (1/core)scheduler

EL2 - Hypervisor

binary with
PARTS

binary with
PARTS

binary with
PARTS

source

PARTS
compiler



 

Figure 4: The trapping of PA configuration must be released
¶, in order to allow the kernel to manage the PA keys on
process creation and context switches ·. Faults generated
by failed authentications will be trapped by the kernel ¸.

whenever a task is scheduled to run. When a new child pro-
cess is forked, the parent’s keys are duplicated to the child’s
memory descriptor. However, when a new executable file is
exec’d in the context of an existing process, the kernel ini-
tializes a new set of PA keys using get_random_bytes().
In other words, each new process receives a new set of PA
keys which remain unchanged thereafter.

7.2 Security Evaluation
7.2.1 Return address signing

Return address signing in both GCC [31], and PARTS pre-
vents an attacker from introducing forged return addresses to
the program stack. Compared to GCC, PARTS augments the
PA modifier used for return address signing by combining a
function-specific identifier with the SP value (R2). As a
result, PARTS return address signing precludes the possibil-
ity of reuse of the return address between different functions,
irrespective of SP value collisions. It remains susceptible to
pointer reuse between distinct invocations of the same func-
tion from call sites with same SP value (R1).

7.2.2 Forward-edge code pointer signing

As with PARTS return address signing, forward-edge code
pointer signing prevents an attacker from using forged code
pointers injected into program memory (R1). This prevents
a large class of attacks (e.g., typical ROP/JOP gadgets) that
rely on redirecting the control flow to code in the middle
of functions, i.e., addresses that never were valid targets of
benign control-flow transfers.

USENIX Association 28th USENIX Security Symposium 185

PARTS restricts forward-edge code pointer reuse by en-
forcing run-time type safety for signed pointers (R2). Un-
der this scheme, pointers used in a pointer reuse attack must
share the same type-id (i.e., have a matching type on the
LLVM IR level). This prevents large classes of function-
reuse attacks. The solution is compatible with common pro-
gramming patterns involving function pointers (R3), such
as callbacks, but allows reuse between code pointers to func-
tions with identical type signatures.

7.2.3 Data pointer signing

PARTS data pointer signing protects all data pointers and
prevents an attacker from loading a forged data pointer to
program memory (R1). This prevents all non-control data
attacks that rely on corrupting data pointers to unintended
parts of of memory. This class of attacks includes all cur-
rently known DOP attacks [16].

PARTS restricts data pointer reuse by enforcing run-time
type safety also for data pointers (R2). Reuse attacks would
be more useful to an attacker if they could substitute a vulner-
able pointer with one referencing an object of different size
or type. Therefore restricting pointer substitution based on
the pointer’s type restricts the attacker’s capability to cause
unintended data flows within the program. However, pointer
conversions are a challenge for data pointer integrity. As
discussed in Section 5.3, PARTS accommodates data point-
ers that are cast from type A to an incompatible type B by
writing the converted pointer using the type-id of B. This
may expand the effective set of reusable pointers under our
threat model; the attacker can record pointers of type A and
reuse them at PAC conversion site A→ B, thereby obtaining
a pointer of type B to an object of type A. This converted
pointer can then be used at de-reference sites that require
pointers of type B. If the program also includes a conversion
from B to A this makes both types interchangeable.

PARTS data pointer integrity does not guarantee spatial
safety of pointer accesses to data objects, nor does it address
the temporal safety (e.g., prevent use-after-free conditions).
ARMv8-A PA does not provide facilities to directly address
these challenges. We discuss orthogonal schemes that can
be used in combination with PARTS to provide spatial and
temporal safety guarantees in Section 8.

7.2.4 PAC entropy

As explained in Section 3, the PAC size b is a concern for any
PA-based scheme. On typical AArch64 Linux systems, b is
between 16 and 24. To succeed with probability p, a PAC
guessing attack requires log(1−p)

log(1−2−b)
guesses on the assump-

tion that a PAC comparison failure leads to program termi-
nation. On our simulator setup where b = 16, achieving a
50%-likelihood for a correct guess requires 45425 attempts.

Note that ROP/DOP attacks require an environment where
a set of jumps (gadgets) can be set up, each requiring a sepa-
rate PAC to be broken. Consequently, success probability of
a complete attack will decrease exponentially with the num-
ber of jumps necessary.

Pre-forked or multithreaded programs will share the same
PA key between the parent and all sibling threads/processes.
This could allow an attacker to brute force a PAC by target-
ing a sibling, if PAC failure on a sibling does not result in the
termination (and hence PA key reset) of all threads/processes
sharing the same PAC key. In this scenario, 2b−1 guesses on
average are enough to guess a b-bit PAC (32768 guesses for
b = 16). Multithreaded / pre-forking applications could be
hardened against guessing attacks by requiring a full appli-
cation restart if the number of unexpected terminations of
child threads/processes exceeds a pre-defined threshold.

7.3 Performance Evaluation

The FVP processor, peripheral models, and micro-
architectural fabric is simplified. Consequently, timing on
the FVP model differs from actual hardware. The ARM Fast
Models documentation states that ”all instructions execute
in one processor master clock cycle“. We confirm this be-
havior for PA instructions in the FVP by using microbench-
marks that allow PA instructions to be timed in isolation. As
a result, we cannot use the FVP to estimate the expected run-
time overhead of PARTS. Instead, we estimate the execution
time of PA instructions and develop a PA-analogue that emu-
lates the run-time cost of PA instructions (Section 7.3.1). We
then run large-scale benchmarks on real (non-PA) hardware
using our PA-analogue (Section 7.3.2).

7.3.1 PA-analogue

From [5, Table 8] we can deduce that on a (1.2GHz) mobile
core, the PAC is computable with an approximate overhead
of 4 cycles, without accounting for the potential speed ben-
efits of opportunistic pipelining or the inclusion of several
parallel PAC computing engines per core. For simplicity, we
assume equal cycle counts for all PA instructions. Based on
this assumption we construct a PA-analogue (Listing 5) as
a proxy to measure overhead of PA instrumentation on non-
PA CPUs: it consists of four exclusive-or (eor) operations to
account for the 4 cycles. The final eor operates on the modi-
fier and SP to enforce a memory read/write dependency, thus
preventing the CPU pipeline from arbitrarily delaying the op-
erations. We have confirmed that our PA-analogue exhibits
the expected overhead using our microbenchmarks.

186 28th USENIX Security Symposium USENIX Association

eor Xptr , Xptr , #0 x2 ; spend c y c l e s
eor Xptr , Xptr , #0 x3 ; t o a p p r o x i m a t e
eor Xptr , Xptr , #0 x5 ; PA i n s t r u c t i o n
eor Xptr , Xptr , Xmod ; overhead

Listing 5: PA-analogue simulating PA instructions

7.3.2 nbench-byte benchmarks

For our performance evaluation we use the Linux nbench-
byte 2.2.3 synthetic benchmark4 designed to measure CPU
and memory subsystem performance, providing a reasonable
prediction of real-world system performance5. We follow
work such as [6, 10, 22, 33, 37, 10] and use nbench rather
than the SPEC CPU standardized applications benchmarks
for our evaluation, as nbench allows us verify the functional-
ity of PARTS instrumentation with manageable simulation
times on the FVP. The current version of the SPEC CPU
benchmark suite, SPEC CPU20176, has replaced many tests
in the previous, now retired SPEC CPU20067 with signif-
icantly larger and more complex workloads (up to ~10X
higher dynamic instruction counts). As a result, the SPEC
simulation times on the FVP proved to be unmanageable; for
example, running individual SPEC benchmarks take hours to
days to complete on the FVP. This is a challenge for both re-
searchers and industry practitioners who rely on hardware
simulation for evaluation [30]. We report our results for a
subset of SPEC CPU2017 tests in Appendix B.

The nbench benchmarks include 10 different tests. We
adopt the same methodology as Brasser et al. [6] and run
each test a constant number of iterations for the following
cases: a) uninstrumented baseline b) each PARTS scheme
(return address signing, forward-edge code pointer integrity,
and data pointer integrity) enabled individually, and c) all
schemes enabled simultaneously. Compiler optimizations
were disabled for all tests. The tests were performed on
a 96boards Kirin 620 HiKey (LeMaker version) with a
ARMv8-A Cortex A53 Octa-core CPU (1.2GHz) / 2GB
LPDDR3 SDRAM (800MHz) / 8GB eMMC, running the
Linux kernel v4.18.0 and BusyBox v1.29.2. Figure 5 shows
the results, normalized to the baseline. A more detailed de-
scription can be found in Appendix A.

Return address signing incurs a negligible overhead of
less than 0.5%. This is expected because the estimated per-
function overhead of 12 to 16 cycles is typically small com-
pared to the full execution time of the instrumented func-
tion. The same holds for indirect calls (6-8 cycle overhead at
the call site), although indirect calls are underrepresented in
nbench-byte. However, our microbenchmarks for the code

4http://www.math.utah.edu/~mayer/linux/bmark.html
5http://www.math.utah.edu/~mayer/linux/byte/bdoc.pdf
6https://www.spec.org/cpu2017/
7https://www.spec.org/cpu2006/

pointer integrity instrumentation indicate that a 6 to 8 cycle
overhead per indirect function call is reasonable under the
assumed QARMA performance.

Data pointer integrity depends largely on the memory pro-
file of the instrumented program. For instance, the floating
point emulation test extensively handles data pointers, result-
ing in a 39.5% overhead. In contrast, the Fourier and neural
network benchmarks contain no data pointers and thus incur
no discernible overhead. The geometric mean of the over-
head of the combined instrumentation for all tests is 19.5%.

7.4 Compatibility Evaluation
Based on our evaluation, PARTS is compatible with standard
C code (R3). Because return address signing only affects
the instrumented function, it can be safely applied without
interfering with the operation of other parts of programs, or
uninstrumented code.

PARTS forward-edge code pointer integrity and data
pointer integrity can be safely applied to complete code
bases. However, if PARTS is applied only to a partial
code base, the instrumented code interfacing with non-
instrumented (legacy) libraries requires special consider-
ation. In particular pointers used by both instrumented
and uninstrumented code cannot be passed directly between
them. We discuss solutions for backwards compatibility with
legacy libraries in Section 10.

We encountered no compatibility issues with PARTS dur-
ing our performance evaluation with nbench (Section 7.3).

8 Related Work

Code-pointer integrity (CPI) [21] protects access to code
pointers — and data pointers that may point to code pointers
— by storing them in a disjoint area of memory; the SafeS-
tack8. The SafeStack itself must be protected from unautho-
rized access. Randomizing the location of the SafeStack is
efficient [20], but easily defeated by an attacker who can read
arbitrary memory. Stronger protection of the SafeStack us-
ing hardware-enforced isolation or software-isolation incurs
an average performance overhead of 8.4% or 13.8% in SPEC
CPU2006 benchmarks.

Protecting pointers using cryptography. Prior crypto-
graphic defenses against run-time attacks generally assume
the attacker cannot read memory. PointGuard [12] instru-
ments a program to apply a secret XOR mask to all pointer
values. This prevents an attacker from reliably forging
pointer values without knowledge of the mask. Data ran-
domization [7] extends data masking to cover all data in
memory. It uses static points-to analysis and distinct masks
to partition memory accesses in separate classes. Neither

8https://clang.llvm.org/docs/SafeStack.html

USENIX Association 28th USENIX Security Symposium 187

n
o

rm
al

iz
ed

 o
ve

rh
ea

d

0.9

1

1.1

1.2

1.3

1.4

1.5

Numeric sort String sort Bitfield FP emulation Fourier Assignment Idea Huffman Neural net Lu
decomposition

return address signing forward-edge code pointer signing data pointer signing all enabled

(a) Results of instrumented nbench-byte tests features, normalized to a non-instrumented baseline.

ev
en

t
co

u
n

t

1
.8

E+
0

3

4
.0

E+
0

6

5
.7

E+
0

3

6
.2

E+
0

5

5
.2

E+
0

6

2
.3

E+
0

5

1
.6

E+
0

6

1
.8

E+
0

4

3
.6

E+
0

5

1
.9

E+
0

4

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

13
.0

E+
0

8

1
.8

E+
0

8

1
.0

E+
0

8

5
.9

E+
0

8

2
.8

E+
0

4

1
.9

E+
0

8

2
.0

E+
0

8

3
.4

E+
0

8

7
.8

E+
0

2

1
.9

E+
0

8

Numeric sort String sort Bitfield FP emulation Fourier Assignment Idea Huffman Neural net Lu
decomposition

return address signing forward-edge code pointer signing data pointer signing

(b) Run-time count of executed locations instrumentable by PARTS. Because the program’s memory profile affects performance the bench-
mark results clearly correlate with observed memory use (e.g., FP emulation has a large data pointer integrity overhead because it uses many
data pointers)

Figure 5: nbench benchmark results

PointGuard nor data randomization remain effective under
our threat model.

Similarly to ARMv8-A PA, Cryptographic CFI
(CCFI) [25] uses MACs to protect control-flow data,
such as return addresses, function pointers, and vtable
pointers. Like PARTS, CCFI uses a function’s type sig-
nature to separate function pointers to distinct protection
domains, but does not protect function pointers embedded in
C structures. Unlike PA, CCFI only benefits from hardware-
accelerated AES for speeding up MAC, resulting in a high
performance overhead (52% overhead on average in SPEC
CPU2006 benchmarks). In contrast, PARTS also benefits
from hardware-accelerated checks by using ARMv8-A PA
instructions, protects both code and data pointers, including
pointers embedded in C structures.

Hardware-assisted mechanisms. Various hardware-
assisted defenses are described in research litera-
ture [15, 42, 41, 14, 38, 40, 28, 32]. The majority
of such defenses have only been realized as soft mi-
croprocessor prototypes on FPGAs. Here we describe
mechanisms available in commercial off-the-shelf processor
architectures.

Only a few commercial processors, such as the SPARC
M79, support tagged memory, which can be used to real-
ize variety of security models (including pointer integrity).
ARM recently announced support for memory tagging in the

9https://swisdev.oracle.com/_files/What-Is-ADI.html

ARMv8.5-A architecture10. It enforces that all accesses to
memory must be made via a pointer with the correct tag.
Pointer tags use the existing address tagging feature in the
ARM ISA that partly overlaps with the bits used to store PA
PACs, meaning that enabling both features simultaneously
reduces the available PAC size by eight bits.

Hardware-assisted memory tagging is designed primar-
ily as a statistical debug aid against use-after-free and other
temporal memory errors. Hardware-Assisted AddressSan-
itizer (HWASAN) [34] is an AArch64-specific compiler-
based tool that builds upon AddressSanitizer (ASAN) — a
memory-error detector popular for vetting memory safety
bugs during software testing. ASAN can detect both spatial
and temporal memory errors. HWASAN can leverage hard-
ware tagged memory, such as SPARC ADI and the upcoming
ARMv8.5-A to reduce the performance overhead associated
with managing tagged memory checks in software. ASAN
/ HWASAN are complementary to PARTS, as they provide
spatial and temporal safety for data accesses via pointers.

Intel Memory Protection Extensions (MPX) is a hardware
feature for detecting spatial memory errors that debuted in
the Intel Skylake microarchitecture. MPX is similar to the
software based SoftBound [27] and its hardware-based pre-
decessor [15]. Although Intel MPX is a hardware-assisted
approach specifically designed to provide spatial memory
safety guarantees, it is not faster than software-based ap-
proaches [29]. It can cause up to 4x slowdown in the worst

10https://community.arm.com/processors/b/blog/posts/
arm-a-profile-architecture-2018-developments-armv85a

188 28th USENIX Security Symposium USENIX Association

case with an average run-time overhead of 50%. It also suf-
fers from other shortcomings, such as the lack of support for
multithreading and several common C/C++ idioms. GCC
has dropped support for MPX altogether11.

Control-flow integrity. Carlini et al. [8] define fully-
precise static CFI as follows: “An indirect control-flow
transfer along some edge is allowed only if there exists a
non-malicious trace that follows that edge.” In other words,
fully-precise static CFI enforces that execution follows a
CFG that contains an edge if and only if that edge is exer-
cised by intended program behavior. Fully-precise static CFI
is thus the most restrictive stateless policy possible without
breaking intended functionality. To date, there exist no im-
plementation of fully-precise CFI; all practical implementa-
tions are limited by the precision of CFGs obtained through
static control analysis.

Carlini et al. further show that all stateless CFI schemes,
including fully-precise static CFI are vulnerable to control-
flow bending; attacks where each control-flow transfer is
within a valid CFG, but where the program execution trace
conforms to no feasible benign execution trace. For instance,
in a stateless policy such as fully-precise static CFI, the best
possible policy for return instructions (i.e., backward edges
in the CFG) is to allow return instructions within a function
F to target any instruction that follows a call to F . In other
words, fully-precise static CFI checks if a given control-flow
transfer conforms to any of the known control-flow transfers
from the current position in the CFG, and does not distin-
guish between different paths in the CFG that lead to a given
control-flow transfer. For this reason CFI is typically aug-
mented with a shadow call stack [1, 13] to enforce integrity
of return addresses stored on the call stack. We compare
PARTS to CFI solutions in Section 9.2.

9 Comparison with other integrity policies

9.1 Fully precise pointer integrity
As discussed in Section 4.1, Pointer Integrity can be loosely
defined as a policy ensuring that the value of a pointer at the
time of use (dereference or call) corresponds to the value of
the pointer when it was created. In this section, we provide a
more rigorous definition of Pointer Integrity.

We define fully-precise pointer integrity as follows: A
pointer dereference is allowed if and only if the pointer is
based on its target object. We adopt Kuznetsov et al.’s [21]
definition of “based on” and say a pointer P is based on a tar-
get object X if, and only if, P is obtained at run-time by ”(i)
allocating X on the heap, (ii) explicitly taking the address of
X, if X is allocated statically, such as a local or global vari-
able, or is a control-flow target (including return locations,

11https://gcc.gnu.org/viewcvs/gcc?view=revision&
revision=261304

whose addresses are implicitly taken and stored on the stack
when calling a function), (iii) taking the address of a sub-
object y of X (e.g., a field in the struct X), or (iv) computing
a pointer expression (e.g., pointer arithmetic, array index-
ing, or simply copying a pointer) involving operands that are
either themselves based on object X or are not pointers.“

Kuznetsov et al’s CPI [21] (Section 8) provides fully pre-
cise integrity guarantees for code pointers by ensuring that
accesses to sensitive pointers are safe (sensitive pointers are
code pointers and pointers that may later be used to ac-
cess sensitive pointers). However, CPI requires dedicated,
integrity-protected storage for sensitive pointers.

As discussed in Section 7.2, PARTS, and PA solutions in
general, achieve an approximation of fully-precise pointer
integrity. In particular, PARTS allows the substitution of a
pointer P by another pointer P′ based on object X , if P and
P′ share the PA modifier. In other words, when PA modifiers
are unique to each protected pointer value, PA provides fully-
precise pointer integrity. However, ensuring the uniqueness
of PA modifiers is not possible in practice due to the fol-
lowing reasons: 1) program semantics may require a set of
pointers to be substitutable with each other (e.g., pointers to
callback functions) 2) the choice of allowed pointers may
depend on run-time properties (e.g., which callback func-
tion was registered earlier). In these cases, a unique mod-
ifier must be determined at run-time. Fully-precise pointer
integrity does not imply memory safety. In the case of PA,
if the modifier is determined at run-time and stored in mem-
ory, the PA modifier itself may become a target for an at-
tacker wishing to undermine the integrity policy. To avoid
this, modifier values must be derived in a way which leaves
the value outside the control of the attacker, e.g., stored in a
dedicated hardware register, or read-only program memory.

9.2 Fully-precise static CFI

In contrast to stateless CFI, which allows control-flow tran-
sitions present in its CFG regardless of the origin of the code
pointer value, PA-based solutions (including PARTS) can
preclude forged pointer values from outside the process. The
policy that prevents pointer reuse can suffer from limitations
similar to those present stateless CFI.

PARTS return address signing provides strong guarantees
even when subjected to pointer reuse. In contrast, a stateless
CFI policy allows a function to return to any of its call sites.
As such, static CFI cannot prevent injection of pointers that
are within the expected CFG, i.e., control-flow bending at-
tacks. PARTS additionally requires matching SP values, and
that the reused return address originates from a prior func-
tion invocation of the same function within the same process
for an attack to succeed.

PARTS forward-edge code pointer integrity provides sim-
ilar guarantees (under reuse attacks) as LLVM’s type-based
protection (when subjected to any forged pointer). In both

USENIX Association 28th USENIX Security Symposium 189

cases, attacks are limited to using pointers of the correct dy-
namic type. PARTS in addition requires that the injected
pointer originates from the victim process.

While shadow-stacks protected through randomization
can be implemented with minimal performance overhead,
our adversary model precludes this approach. Furthermore,
software-isolated shadow stack solutions impose impracti-
cal performance overheads, and ARM processors do not cur-
rently provide direct hardware support for shadow stacks.

10 Conclusion and Future Work

We plan to extend PARTS protection architecture to other
protection domains like the OS kernel, or hypervisor. The
only significant change for PARTS architecture is to arrange
for key configuration for both kernel and EL0 PARTS to be
trapped (and managed) on a higher exception level (EL2,3).
We are further looking at adding C++ support PARTS. While
we do not expect any fundamental problems, some C++ spe-
cific features, such as inheritance, cannot be directly handled
by our current instrumentation strategy.

Authenticated pointers with PACs cannot be used by
legacy code (Section 2.2) while PARTS-instrumented code
will trap if pointers without PACs are used. For legacy and
PARTS code to interact, we can use wrappers that manipulate
function arguments and return values by embedding/strip-
ping PACs. For shared pointers or complex data structures,
annotations can disable authentication of selected pointers,
allowing programmers to manually adjust pointer conversion
to and from legacy code.

Currently, the PARTS compiler assumes shared libraries to
be uninstrumented. Instrumented shared libraries must deal
with PACs for statically allocated pointers after linking, and
thus require changes to the dynamic linker.

Pointer integrity does not imply full memory safety (Sec-
tion 9.1). Although ARMv8-A PA does not support bounds
checking for pointer accesses with authenticated pointers, it
has a general-purpose instruction, pacga, for producing and
validating PACs computed over the contents of two 64-bit
registers. This can be used to build authenticated canaries to
identify buffer overflow attacks, or to validate the integrity
(freshness) of atomic data, such as integer or counter values.
In principle, pacga instructions can even be chained to vali-
date arbitrary-sized blocks of data.

Finally, effective ways of complementing PA with other
emerging memory safety mechanisms like the forthcoming
support for memory tagging in ARMv8.5-A is an important
line of future work.

Acknowledgments

This work was supported in part by the Academy of Finland
under grant nr. 309994 (SELIoT), and the Intel Collabora-

tive Research Institute for Collaborative Autonomous & Re-
silient Systems (ICRI-CARS).

The authors thank Kostya Serebryany and Rémi Denis-
Courmont for interesting discussions and Zaheer Gauhar for
implementation assistance.

References

[1] ABADI, M., ET AL. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf.
Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[2] APPLE INC. iOS Security — iOS 12.
https://www.apple.com/business/site/docs/
iOS_Security_Guide.pdf, 2018.

[3] ARM LTD. ARMv8 architecture reference manual, for
ARMv8-A architecture profile (ARM DDI 0487C.a).
https://static.docs.arm.com/ddi0487/ca/
DDI0487C_a_armv8_arm.pdf, 2017.

[4] ARM LTD. Fast models, version 11.4,
fixed virtual platforms (FVP) reference guide.
https://static.docs.arm.com/100966/1104/
fast_models_fvp_rg_100966_1104_00_en.pdf,
2018.

[5] AVANZI, R. The QARMA block cipher family. al-
most MDS matrices over rings with zero divisors,
nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for
low-latency s-boxes. IACR Trans. Symmetric Cryptol.
2017, 1 (2017), 4–44.

[6] BRASSER, F., ET AL. DR.SGX: Hardening SGX
enclaves against cache attacks with data location
randomization. https://arxiv.org/abs/1709.
09917, 2017.

[7] CADAR, C., ET AL. Data randomization. Tech. Rep.
MSR-TR-2008-120, Microsoft Research, September
2008.

[8] CARLINI, N., ET AL. Control-flow bending: On the ef-
fectiveness of control-flow integrity. In Proc. USENIX
Security ’15 (2015), pp. 161–176.

[9] CHECKOWAY, S., ET AL. Return-oriented program-
ming without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2010), CCS ’10, ACM,
pp. 559–572.

[10] CHEN, S., ET AL. Detecting privileged side-channel
attacks in shielded execution with DéJà Vu. In Proc.
ACM ASIA CCS ’17 (2017), pp. 7–18.

190 28th USENIX Security Symposium USENIX Association

[11] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND
IYER, R. K. Non-control-data attacks are realistic
threats. In Proc. USENIX Security ’05 (2005), pp. 177–
191.

[12] COWAN, C., ET AL. PointGuardTM: Protecting point-
ers from buffer overflow vulnerabilities. In Proc.
USENIX Security ’03 (2003), pp. 91–104.

[13] DAVI, L., ET AL. MoCFI: A framework to mitigate
control-flow attacks on smartphones. In Proc.NDSS ’12
(2012).

[14] DAVI, L., ET AL. HAFIX: Hardware-assisted flow in-
tegrity extension. In Proc. ACM/EDAC/IEEE DAC ’15
(2015), pp. 74:1–74:6.

[15] DEVIETTI, J., ET AL. Hardbound: Architectural sup-
port for spatial safety of the C programming language.
In Proc. ’08 (2008), pp. 103–114.

[16] HU, H., ET AL. Data-oriented programming: On the
expressiveness of non-control data attacks. In Proc.
IEEE S&P ’16 (2016), pp. 969–986.

[17] INTEL. Control-flow enforcement technology pre-
view. https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf, 2016.

[18] ISO/IEC. ISO/IEC 9899:201x committee draft — De-
cember 2, 2010. http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1548.pdf, 2010.

[19] KORNAU, T. Return Oriented Programming for
the ARM Architecture. PhD thesis, Ruhr-Universität
Bochum, 2009.

[20] KUZNETSOV, V., ET AL. Poster: Getting the point(er):
On the feasibility of attacks on code-pointer integrity.
IEEE S&P ’15.

[21] KUZNETSOV, V., ET AL. Code-pointer integrity. In
Proc. USENIX OSDI ’14 (2014), pp. 147–163.

[22] LEE, S., ET AL. Inferring fine-grained control flow
inside SGX enclaves with branch shadowing. In Proc.
USENIX Security ’17 (2017), pp. 557–574.

[23] LI, R., AND JIN, C. Meet-in-the-middle attacks on
reduced-round QARMA-64/128. The Computer Jour-
nal 61, 8 (2018), 1158–1165.

[24] LILJESTRAND, H., ET AL. PAC it up: Towards
pointer integrity using ARM pointer authentication.
arXiv:1811.09189 [cs.CR], 2019.

[25] MASHTIZADEH, A. J., ET AL. CCFI: Cryptograph-
ically enforced control flow integrity. In Proc. ACM
CCS ’15 (2015), pp. 941–951.

[26] MICROSOFT. Enhanced Mitigation Experience
Toolkit. https://www.microsoft.com/emet, 2016.

[27] NAGARAKATTE, S., ET AL. SoftBound: Highly com-
patible and complete spatial memory safety for C. In
Proc. ACM PLDI ’09 (2009), pp. 245–258.

[28] NYMAN, T., ET AL. HardScope: Thwarting DOP
with hardware-assisted run-time scope enforcement.
arXiv:1705.10295 [cs.CR], 2017.

[29] OLEKSENKO, O., ET AL. Intel MPX explained:
An empirical study of Intel MPX and software-based
bounds checking approaches. https://arxiv.org/
abs/1702.00719, 2017.

[30] PANDA, R., ET AL. Wait of a decade: Did SPEC CPU
2017 broaden the performance horizon? In Proc. IEEE
HPCA ’18 (2018), pp. 271–282.

[31] QUALCOMM TECHNOLOGIES, INC. Pointer authenti-
cation on ARMv8.3. https://www.qualcomm.com/
media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf, 2017.

[32] ROESSLER, N., AND DEHON, A. Protecting the stack
with metadata policies and tagged hardware. In Proc.
IEEE S&P ’18 (2018), pp. 1072–1089.

[33] SEO, J., ET AL. SGX-Shield: Enabling address
space layout randomization for SGX programs. In
Proc.NDSS ’17 (2017).

[34] SEREBRYANY, K., ET AL. Memory tagging and
how it improves C/C++ memory safety. arXiv:
1802.09517 [cs.CR], 2018.

[35] SHACHAM, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proc. ACM CCS ’07 (2007), pp. 552–561.

[36] SHACHAM, H., ET AL. On the effectiveness of
address-space randomization. In Proc. ACM CCS ’04
(2004), pp. 298–307.

[37] SHIH, M.-W., ET AL. T-SGX: Eradicating controlled-
channel attacks against enclave programs. In Proc.
NDSS ’17 (2017).

[38] SONG, C., ET AL. HDFI: Hardware-assisted data-flow
isolation. In Proc. IEEE S&P ’16 (2016), pp. 1–17.

[39] SZEKERES, L., ET AL. SoK: Eternal war in memory.
In Proc. IEEE S&P ’13 (2013), vol. 12, pp. 48–62.

[40] TSAMPAS, S., ET AL. Towards automatic compart-
mentalization of c programs on capability machines. In
Workshop on Foundations of Computer Security 2017
(8 2017), pp. 1–14.

USENIX Association 28th USENIX Security Symposium 191

[41] WATSON, R. N. M., ET AL. CHERI: A hybrid
capability-system architecture for scalable software
compartmentalization. In Proc. IEEE S&P ’15 (2015),
pp. 20–37.

[42] WOODRUFF, J., ET AL. The CHERI capability model:
Revisiting RISC in an age of risk. In Proc. ’14 (2014),
pp. 457–468.

[43] ZONG, R., AND DONG, X. Meet-in-the-middle at-
tack on QARMA block cipher. IACR Cryptology ePrint
Archive (2016).

A nbench experimental setup

The nbench benchmarks employs dynamic workload adjust-
ment to allow the tests to expand or contract depending on
the capabilities of the system under test. To achieve this,
nbench employs timestamping to ensure that a test run ex-
ceeds a pre-determined minimum execution time. If a test
run finishes before the minimum execution time has been
reached, the test dynamically adjusts its workload, and tries
again. For example, the Numeric Sort test will construct an
array filled with random numbers, measure the time taken
to sort the array. If the time is less than the pre-determined
minimum time, the test will build two arrays, and try again.
If sorting two arrays takes less time than the pre-determined
minimum, the process repeats with more arrays.

Since we want to determine the relative overhead in exe-
cution time caused by our instrumentation, we employ the
methodology described by Brasser et al. [6] and modify
nbench to instead run each test a constant number of it-
erations. The number of iterations was determined indi-
vidually for each test based on the iteration counts deter-
mined by a unmodified nbench run on the FVP. We then
instrument the nbench benchmarks using our PA-analogue
(Section 7.3.1) and measure the relative execution time be-
tween non-instrumented and instrumented nbench tests on
the HiKey development platform using the BusyBox time
utility.

Each individual benchmark test was run 200 times us-
ing the pre-determined number of iterations. Figure 5a, in
Section 7.3.2 shows instrumentation overhead for individ-
ual tests in relation to the uninstrumented test run. Table 3
shows the numeric overhead ratio for each individual test.
Because the nbench benchmarks are designed to measure
performance in a manner which is operating system agnos-
tic, they are written in ANSI C and only execute in a single
thread. We therefore only consider user time when measur-
ing the overhead of the instrumentation, and exclude context
switches and system calls.

The run-time overhead of PARTS is dependent on spe-
cific run-time events, such as the number of function invo-
cations in the case of return address signing. Figure 5b in

Table 2: Overhead as ratio and standard deviation (σ) for re-
turn address signing and (forward-edge) code pointer signing
for 505.mcf_r and 519.lbm_r SPEC benchmarks.

Benchmark Uninstrumented ret. addr. sign. + code ptr. integrity
ratio σ ratio σ

505.mcf_r 1 0.004 1.005 0.004
519.lbm_r 1 0.000 1.000 0.000

Section 7.3.2 shows the order of magnitude of instrumented
run-time events in the nbench tests. We also report the user
mode run-time for uninstrumented nbench tests, the number
of iterations of each individual test, and number of instru-
mented run-time events in Table 4.

B SPEC CPU2017 experimental setup

Due to unmanageable simulation times in the FVP simulator
we have verified the correctness of PARTS instrumentation
only on a subset of SPEC CPU2017 benchmarks. Specif-
ically, we chose the 505.mcf_r and 519.lbm_r benchmarks
from the SPECrate 2017 integer and floating point suites,
because these were the smallest C benchmarks in terms of
lines of code. The benchmarks were compiled using SPEC
runcpu, with a AArch64-specific configuration specifying
whole-program-llvm12, with our PARTS-enabled LLVM, as
the compiler. We then extracted the bitcode — created by
whole-program-llvm during compilation — and used it to
instrument and compile the binaries we used for evaluation:
one uninstrumented, one instrumented with PA instructions,
and one instrumented with our PA-analogue. We enabled
both return address and forward-edge code pointer signing
for the instrumented binaries.

We run the PARTS-instrumented binaries on the FVP sim-
ulator to confirm correct functionality. The simulation time
for the tested benchmarks was between 12 and 48 hours. Per-
formance benchmarks, for baseline and PA-enabled binaries,
were run on the HiKey devices, using the same setup as our
nbench evaluation. The results are shown in Table 2, and
are based on five runs of each benchmark. In 505.mcf_r we
observed overheads consistent with our results from nbench.
We observed no discernible overhead in 519.lbm_r. We at-
tributed this to the following properties of 519.lbm_r: (a) it
does not exhibit forward-edge code pointers, and (b) it has
few non-leaf function calls in relation to the arithmetic com-
putation performed part of the benchmark.

12https://github.com/travitch/whole-program-llvm

192 28th USENIX Security Symposium USENIX Association

Table 3: Overhead as ratio and standard deviation (σ) for nbench tests reported separately for uninstrumented, return address
signing, (forward-edge) code pointer signing, data pointer signing and all instrumentation enabled.

Test Uninstrumented PARTS
ret. addr. sign code ptr. signing data ptr. signing all enabled

ratio σ ratio σ ratio σ ratio σ ratio σ

Numeric sort 1 0.002 1 0.003 1 0.003 1.293 0.003 1.293 0.003
String sort 1 0.002 1.01 0.002 1 0.002 1.251 0.002 1.259 0.002
Bitfield 1 0.002 1 0.002 1 0.002 1.15 0.002 1.15 0.001
FP emulation 1 0.001 1 0.001 1 0.001 1.395 0.001 1.396 0.001
Fourier 1 0.002 1.027 0.004 0.999 0.003 0.998 0.002 1.016 0.003
Assignment 1 0.001 1 0.002 1 0.002 1.145 0.002 1.145 0.002
Idea 1 0.001 1.004 0.002 1 0.002 1.279 0.002 1.283 0.002
Huffman 1 0.001 0.999 0.001 0.999 0.001 1.294 0.001 1.295 0.002
Neural net 1 0.001 1.002 0.002 1 0.002 1.001 0.002 1.001 0.003
Lu decomposition 1 0.001 1 0.002 1 0.002 1.173 0.002 1.173 0.002

Geometric average 1 - 1.004 - 1.000 - 1.191 - 1.195 -

Table 4: User mode run-time (utime) and standard deviation (σ) in seconds for uninstrumented nbench tests, the pre-determined
number of iterations for each individual test, and the number of run-time events that are affected by instrumentation. Non-leaf
calls correspond to function invocations protected by return address signing. Leaf calls correspond to function invocations
which do no store the value of LR in memory, and thus can be left uninstrumented. Instruction pointers created and indirect
calls are instrumented by (forward-edge) code pointer signing, and data pointer loads / stores correspond to events where data
pointer instrumentation is active.

Test Baseline Instrumented events
utime σ iterations non-leaf calls leaf calls instr. ptr. created indirect calls data ptr. ldr/str

Numeric sort 3.573 0.007 350 1802 7117598 10 5 302212833
String sort 2.971 0.005 125 3977237 1022510 10 5 180105579
Bitfield 2.687 0.004 101647890 5669 4308 10 5 104670943
FP emulation 5.862 0.004 35 616536 37906118 10 5 589518589
Fourier 2.693 0.005 25870 5240188 161 10 5 27504
Assignment 4.414 0.005 10 225602 113353 10 5 190662093
Idea 2.808 0.004 1500 1640184 54420196 10 5 196844406
Huffman 4.212 0.005 1000 17659 46983276 10 5 343176061
Neural net 5.477 0.007 10 359423 441412 10 5 782
Lu decomposition 3.596 0.005 230 18970 441412 10 5 186704928

USENIX Association 28th USENIX Security Symposium 193

C ARMv8-A PA Instructions

Table 5: List of PA instructions referred to in the main paper [3]. PA Key indicates the PA key the instruction uses. Addr.
indicates the source of the address to be signed / authenticated (Xd indicates that the address is specified using a general purpose
register). Mod. indicates the modifier used by the instruction (Xm indicates that the modifier is specified by a general purpose
register.) The backwards-compatible column indicates if the instruction encoding resides in the NOP space for pre-existing
ARMv8-A processors.

Instruction Mnemonic
PA Key

Addr. Mod.
Backwards-
compatibleInstr. Data Gen-

A B A B eric

BASIC POINTER AUTHENTICATION INSTRUCTIONS

Add PAC to instr. addr.

paciasp 3 LR SP 3
pacia 3 Xd Xm 3
pacibsp 3 LR SP 3
pacib 3 Xd Xm 3

Add PAC to data addr.
pacda 3 Xd Xm, 3
pacdb 3 Xd Xm 3

Calculate generic MAC pacga 3 3

Authenticate instr. addr.

autiasp 3 LR SP 3
autia 3 Xd Xm 3
autibsp 3 LR SP 3
autib 3 Xd Xm 3

Authenticate data addr.
autda 3 Xd Xm, 3
autdb 3 Xd Xm 3

COMBINED POINTER AUTHENTICATION INSTRUCTIONS

Authenticate instr. addr.
and return

retaa 3 LR SP 7
retab 3 LR SP 7

Authenticate instr. addr.
and branch

braa 3 Xd Xm 7
brab 3 Xd Xm 7

Authenticate instr. addr.
and branch with link

blraa 3 Xd Xm 7
blrab 3 Xd Xm 7

Authenticate instr. addr.
and exception return

eretaa 3 ELR SP 7
eretab 3 ELR SP 7

Authenticate data. addr.
and load register

ldraa 3 Xd zero 7
ldrab 3 Xd zero 7

194 28th USENIX Security Symposium USENIX Association

Publication IV

Hans Liljestrand, Zaheer Gauhar, Thomas Nuyman, Jan-Erik Ekberg, N.
Asokan. Protecting the stack with PACed canaries. In Proceedings of the
4th Workshop on System Software for Trusted Execution, SysTEX ’19,
Huntsville, ON, Canada, 6 pages, October 2019.

© 2019 ACM
Reprinted with permission.

133

Protecting the stack with PACed canaries
Hans Liljestrand

Aalto University, Finland
Huawei Technologies Oy, Finland

hans@liljestrand.dev

Zaheer Gauhar
Aalto University, Finland
zaheer.gauhar@aalto.fi

Thomas Nyman
Aalto University, Finland
thomas.nyman@aalto.fi

Jan-Erik Ekberg
Huawei Technologies Oy, Finland

Aalto University, Finland
jan.erik.ekberg@huawei.com

N. Asokan
University of Waterloo, Canada

asokan@acm.org

Abstract
Stack canaries remain a widely deployed defense against
memory corruption attacks. Despite their practical useful-
ness, canaries are vulnerable to memory disclosure and
brute-forcing attacks. We propose PCan, a new approach
based on ARMv8.3-A pointer authentication (PA), that uses
dynamically-generated canaries to mitigate these weak-
nesses and show that it provides more fine-grained protec-
tion with minimal performance overhead.

CCS Concepts • Security and privacy → Embedded sys-
tems security.
ACM Reference Format:
Hans Liljestrand, Zaheer Gauhar, Thomas Nyman, Jan-Erik Ekberg,
and N. Asokan. 2019. Protecting the stack with PACed canaries. In
4th Workshop on System Software for Trusted Execution (SysTEX ’19),
October 27, 2019, Huntsville, ON, Canada. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3342559.3365336

1 Introduction
Run-time attacks that exploit memory errors to corrupt pro-
gram memory are a prevalent threat. Overflows of buffers
allocated on the stack are one of the oldest known attack
vectors [12, 17]. Such exploits corrupt local variables or func-
tion return addresses. Modern attacks techniques—such as
return-oriented programming (ROP) [16] and data-oriented
programming (DOP)[6]— can use this well-known attack vec-
tor to enable attacks which are both expressive and increas-
ingly hard to detect. The fundamental problem is insufficient
bounds checking in memory-unsafe languages such as C /

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SysTEX ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6888-9/19/10. . . $15.00
https://doi.org/10.1145/3342559.3365336

C++. Approaches for hardening memory-unsafe programs
have been proposed, but tend to incur high performance
overheads, and are therefore impractical to deploy [19]. An
exception is a technique called stack canaries [2], which is
both efficient and can detect large classes of attacks. Conse-
quently stack canaries are widely supported by compilers
and used in all major operating systems today [2, 9].

Widely deployed stack canary implementations suffer
from one or more of the following weaknesses: they 1) rely
on canary values that are fixed for a given run of a pro-
gram [2]; 2) store the reference canary in insecure memory,
where an attacker can read or overwrite it [9]; or 3) use only
a single canary per stack frame and therefore cannot detect
overflows that corrupt only local variables.

The recently introduced ARMv8.3-A pointer authenti-
cation (PA) [1] hardware can be used to verify return ad-
dresses [14], effectively turning the return address itself into
a stack canary. However, PA on its own is susceptible to
reuse attacks, where an attacker substitutes one authenticated
pointer with another [8]. State-of-the-art schemes harden
PA return-address protection to ensure that protected return
address as statistically unique to a particular control-flow
path, and therefore cannot be substituted by an attacker [7].

We propose fine-grained PA-based canaries that: 1) protect
individual variables from buffer overflow, 2) do not require
secure storage for reference canaries, 3) can use existing
return-address protection [7] as an anchor to produce ca-
naries which are statistically unique to a particular function
call, and 4) are efficient, since they can leverage hardware
PA instructions both for canary generation and verification.

Our contributions are:
• PCan: A fine-grained, and efficient PA-based ca-

nary scheme (Section 5).
• A realization of PCan for LLVM (Section 6).
• Evaluation showing that PCan is more secure than

existing stack canaries and has only a small perfor-
mance impact (Section 7).

2 Background
A stack canary[2] is a value placed on the stack such that a
buffer overflow will overwrite it before corrupting the return

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Liljestrand, et al.
st

ac
k

 f
ra

m
e frame-

record frame-pointer
return address

canary

buffer
SP

FP
SP+x

Figure 1. A stack canary is a value placed on the stack so
that it will be overwritten by a stack buffer that overflows
to the return address. It allows detection of overflows by
verifying the integrity of the canary before function return.

address (Figure 1). The buffer overflow can be detected by
verifying the integrity of the canary before return.

The initially proposed canaries were randomly generated
32-bit values assigned at process startup and stored within
the process memory [2]. The canaries must remain confi-
dential to prevent an attacker A from avoiding detection by
writing back the correct canary when triggering the buffer
overflow. Terminator canaries [3], consisting of string ter-
minator values (e.g., 0x0, EOF, and 0xFF) can prevent A
from using string operations to read or write whole canaries,
thereby thwarting run-time canary harvesting. Another ap-
proach is to re-generate canaries at run-time, for instance by
masking them with the return address [4]. However, such
techniques rely on the secrecy of the masking value.

Multi-threaded and forked processes can be vulnerable to
guessing attacks if the canaries are shared. If the child process
or thread is restarted after a crash, A can execute a large
number of guesses without resetting the canary. Moreover,
such attacks can utilize incremental—e.g., byte-for-byte—
guessing to efficiently find the canary value [10].

Strong adversaries with arbitrary memory read or write
access can trivially circumvent any canary based solution;
using reads alone allows A to first read the correct canaries
from memory and then perform a sequential overwrite that
writes back the correct canaries while corrupting other data.

2.1 Stack canaries in modern compilers
Modern compilers such as LLVM/Clang and GCC pro-
vide the -fstack-protector feature that can detect stack-
buffer overflows1. It is primarily designed to detect stack
overflows that occur in string manipulation. The default
-fstack-protector option includes a canary only when
a function defines a character array that is larger than a
particular threshold. The default threshold value in GCC
and LLVM is 8 characters, but in practice the threshold is
often lowered to 4 to provide better coverage. However, a
stack overflow can occur on other types of variables. The

1https://lists.llvm.org/pipermail/cfe-dev/2017-April/053662.html

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

Figure 2. PA verifies pointers using an embedded PAC gen-
erated from a pointer’s address, a 64-bit modifier and a
hardware-protected key. (Figure from [7])

-fstack-protector-all option adds a canary to all func-
tions. However, it can incur a substantial use of stack space
and run-time overhead in complex programs.

The -fstack-protector-strong option provides a bet-
ter trade-off between function coverage, run-time perfor-
mance, and memory cost of stack canaries. It adds a canary
to any function that 1) uses a local variable’s address as part
of the right-hand side of an assignment or function argument,
2) includes a local variable that is an array, regardless of the
array type or length, and 3) uses register-local variables.

Today -fstack-protector-strong is enabled by default
for user-space applications in major Linux distributions, such
as Debian and its derivatives2. The -fstack-protector pro-
tects non-overflowing variables by rearranging the stack
such that an overflow cannot corrupt them; but this protec-
tion cannot protect other buffers. On AArch64 the LLVM/-
Clang implementation of -fstack-protector uses a sin-
gle reference canary value for the whole program. This in-
memory reference canary is used to both store and verify
the stack canary on function entry and return, respectively.

2.2 ARMv8-A Pointer Authentication
ARMv8.3-A PA is a instruction set architecture (ISA) ex-
tension that allows efficient generation and verification of
pointer authentication codes (PACs); i.e., keyed message au-
thentication codes (MACs) based on a pointer’s address and
a 64-bit modifier [1]. The PAC is embedded in the unused
bits of a pointer (Figure 2). On 64-bit ARM, the default Linux
configuration uses 16-bit PACs. GNU/Linux has since 5.0
provided support for using PA in user-space. PA provides
new instructions for generating and verifying PACs in point-
ers, and a generic pacga instruction for constructing a 32-bit
MAC based on two 64-bit input registers. After a PAC is
added to a pointer, e.g., using the pacia instruction, it can
be verified later using the corresponding authentication in-
struction, in this case autia. A failed verification does not
immediately cause an exception. Instead, PA corrupts the
pointer so that any subsequent instruction fetch or deref-
erence based on it causes a memory translation fault. The
pacga instruction is an exception as it outputs the produced

2https://wiki.debian.org/Hardening

Protecting the stack with PACed canaries SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

buffer

frame-
record frame-pointer

signed return address

SP

FP

st
ac

k
 f

ra
m

e

Figure 3. The signed return address generated by
-msign-return-address effectively serves as a canary by
allowing detection of stack-buffer overflows.

PAC to a given destination register; verification in this case
must be performed manually by comparing register values.

Current versions of GCC and LLVM/Clang provide the
-msign-return-address feature that uses PA to protect re-
turn addresses [14]. It signs the return address with the stack
pointer (SP) as modifier using pacia lr, sp. The integrity
of the return address is verified before return by issuing the
corresponding authentication instruction autia lr, sp.
Signed return addresses provides similar protection to stack
canaries, i.e., if a stack-buffer overflow corrupts the return
address, this is detected when the return address is verified
before returning from a function (Figure 3). However, PA is
vulnerable to reuse attacks where previously encountered
signed pointers can be used to used to replace latter signed
pointers using the same key and modifier [8]. For instance,
-msign-return-address can be circumvented by reusing a
prior return address signed using the same SP value.

3 Adversary Model
In this work we consider an adversary A that attempts to
compromise the memory safety of a user-space process by
exploiting a stack-buffer overflow. We do not consider adver-
saries at kernel or higher privilege levels. However, A can:
1) trigger any existing stack-buffer overflow, 2) use stack-
buffer over-reads to read memory and 3) repeatedly restart
the process and any child processes or threads in an attempt
to brute force canaries. Adversaries with arbitrary memory
read or write access cannot be thwarted with canary-based
approaches and are beyond the scope of this work.

We assume that A can analyze the target binary and
therefore knows the exact stack layout of functions (barring
variable-length buffers). This enables A to target individual
local variables reachable from a particular buffer overflow
without overflowing canaries past the local variables (Fig-
ure 4). If A further manages to exploit a buffer over-read
or other memory disclosure vulnerability, they could also
overflow past the canary by simply replacing the correct
canary value during the overflow.

st
ac

k
 f

ra
m

e frame-record

SP

FP

SP+x1

buffer

local variable
canary SP+x2

Figure 4. When using only one canary per stack frame,
an attacker could overflow a stack buffer to corrupt local
variables without overwriting the canary.

buffer

canary - C0

local variable

buffer

canary - C1st
ac

k
 f

ra
m

e

frame-record

SP

FP

SP+x1

SP+x2

SP+x3

SP+x4

Figure 5. To detect all overflows we we inject canaries after
any vulnerable stack buffer.

4 Requirements
To detect linear buffer overflows we require a design that
fulfills the following requirements:

R1 Each canary value should be statistically unique.
R2 Reference canaries must not be modifiable by A.
R3 A stack-buffer overflow must always corrupt a canary.

5 Design
We propose PCan, a PA-based canary design that employs
multiple function-specific canaries. By placing canaries after
any array that could overflow (Figure 5), PCan can detect
overflows that only corrupt local variables. This prevents A
from performing precise overflows that corrupt only local
variables without overwriting the canary (R3). To exploit an
overflow without detection A is instead forced to learn the
correct canary values and write them back into place.

In contrast to traditional approaches, PCan avoids expos-
ing reference canaries in memory (R2). Instead, canaries are
re-generated or verified directly using PA. A thus cannot
manipulate the reference canaries, and must instead leak the
specific on-stack canary or attempt a brute-force attack.

The canaries are generated with PA, using a modifier
m consisting of a 16-bit function identifier and the least-
significant 48 bits from SP:m = SP∗216+function-id. This
modifier makes canaries function-dependent and, when SP
differs, different for each call to the same function (R1). Be-
cause the canaries are generated at run-time and the PA keys

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Liljestrand, et al.

are randomly set on each execution, the generated canaries
are also statistically unique for each execution. To avoid de-
tection A must acquire the exact stack-canary belonging to
the specific function call and cannot rely on pre-calculated
canaries or those belonging to other function calls.

5.1 PA-based canaries
PA-based return-address protection [7, 8, 14] already effec-
tively serves as a canary by detecting return-address corrup-
tion. We therefore propose a design that can be efficiently
and easily integrated with existing return-address protec-
tion schemes, but also provide a stand-alone setup. The first
canary in a function’s stack frame, protecting the return-
address, is either a pacga-generated stand-alone canary or
the signed return address:

C0 =

{
pacga(SP,m) if stand-alone
signed_return_address if combined

We denote a canary loaded from the stack withC ′ to indicate
that it might have been corrupted byA. Verification ofC ′0 is
done either by re-generating the stand-alone pacga canary
or by relying on the return-address protection to verify it. To
verify using pacga we re-generateC0 and check thatC0 = C

′
0.

Subsequent canaries, Ci , i > 0, consist of signed pointers
to the previous canary:

Ci = pacda(Cptri−1,m), i > 0
where Cptri is a pointer to Ci . Verification of C ′i , i > 0 is
done by authenticating and loading the canary to retrieve
C ′i−1. If any C ′i is corrupted, authentication fails, causing the
subsequent load to fault (Section 2.2) A successful chain of
loads will yield C0, which is then verified as detailed above.

Our stand-alone scheme is more powerful than
-msign-return-address in that it does not rely solely on
the SP value. However, other schemes might provide better
protection for the return address. For instance, PACStack [7]
proposes a scheme that uses statistically unique modifiers to
protect return addresses by maintaining the head of a chain
of PACs in a single reserved register. We propose that PCan
could be combined with such a mechanism by defining m
as the PACStack authentication token authi and C0 as the
PACStack protected return address. Because the m in this
case would be statistically unique to a specific call-flow this
would also harden the canaries Ci for i > 0.

6 Implementation
We implement PCan as an extension to LLVM 8.0 and using
the stand-alone pacga approach (Section 5.1). To instrument
the LLVM Intermediate Representation (IR) we added new
LLVM intrinsics for generating and verifying PCan canaries.
These intrinsics, along with instructions for storing and load-
ing the canaries, are added through IR transformations be-
fore entering the target-specific compiler backend. We define
corresponding target-specific intrinsics to leverage built-in

1 canary -creation:
2 mov x8, sp
3 movk x8, #3, lsl #48 ; x8← mod
4 pacga x10 , sp, x8 ; x10← C0
5 sub x9, x29 , #0x8 ; x9← Cptr0
6 pacda x9, x10 ; x9← C1
7 str x9, [sp, #40] ; store C1
8 stur x10 , [x29 , #-8] ; store C0

Listing 1. For a function with two vulnerable stack buffers
PCan generates and stores two canaries.

1 canary -verification:
2 ldr x8, [sp, #40] ; x8← C ′1
3 mov x8, sp
4 movk x8, #3, lsl #48 ; x8← mod
5 autda x8, x29 ; authenticate C ′1
6 ldr x8, [x8] ; x8← C ′0
7 pacga x9, sp, x9 ; x9← C0
8 cmp x8, x9 ; check C0 = C ′0

Listing 2. To verify the integrity of canaries PCan first loads
C ′1, then authenticates it before using it to load C ′0, which in
turn is compared to the re-generated C0.

register allocation before converting the intrinsics to hard-
ware instructions in the pre-emit stage.

6.1 Canary creation
To instrument the function prologue PCan locates LLVM
alloca instructions that allocate buffers in the entry ba-
sic block of each function. A new 64-bit allocation for the
canaries is added after each existing alloca. Intrinsics for
generating the canaries and storing them are then added.
The instrumented code will generate a larger stack-frame to
accommodate the canaries and include code to generate and
store the canary values (Listing 1).

6.2 Canary verification
To verify canaries in the function epilogue, PCan loads them
in reverse order, starting from the last Cn (Listing 2). Each
canary C ′i is authenticated using autda and then derefer-
enced to acquire the next canary C ′i−1. To verify the final
canary, C ′0, PCan first re-generates C0 and then performs a
value comparison. Upon failure, an error handler is invoked,
otherwise the function is allowed to return normally. As sug-
gested in Section 5.1, the final canary can be replaced with a
return-address protection scheme. The return address then
serves as a canary that is verified using the corresponding
protection scheme (e.g., -msign-return-address).

7 Evaluation
Due to lack of publicly available PA-capable hardware we
have used an evaluation approach similar to prior work [7, 8].

Protecting the stack with PACed canaries SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

benchmark stack-protector PCan

505.mcf_r −4.78% (4.55) −0.05% (0.13)
519.lbm_r −0.01% (0.01) 0.04% (0.02)
525.x264_r −0.01% (0.01) 1.80% (0.01)
538.imagick_r −0.01% (0.01) 0.19% (0.01)
544.nab_r 0.05% (0.24) −0.18% (0.16)
557.xz_r 0.00% (0.03) 0.04% (0.06)
geo.mean. −0.08% 0.03%

Table 1. SPEC CPU 2017 performance overhead of PCan
and -fstack-protector-strong compared to an uninstru-
mented baseline (standard error in parenthesis). Results in-
dicate that both schemes incur a negligible overhead (geo-
metric mean of 0.3% and < 0%, respectively).

We used the ARMv8-A Base Platform Fixed Virtual Platform
(FVP), based on Fast Models 11.5, which supports ARMv8.3-A
for functional evaluation. For performance evaluation we
used the PA-analogue from prior work [7] and performed
measurements on a 96board Kirin 620 HiKey (LeMaker ver-
sion) with an ARMv8-A Cortex A53 Octa-core CPU (1.2GHz)
/ 2GB LPDDR3 SDRAM (800MHz) / 8GB eMMC, running the
Linux kernel v4.18.0 and BusyBox v1.29.2.

7.1 Performance
We evaluated the performance of PCan using the SPEC
CPU 20173 benchmark, and running it on the HiKey
board. We cross-compiled the benchmarks on an x86
system using whole program LLVM4, and timed the
execution of the individual benchmark programs us-
ing the time utility. Results are reported normalized
to a baseline measured without PCan instrumentation
and compiled with -fno-stack-protector (Table 1). We
compare this baseline to two different setups; one us-
ing only -fstack-protector-strong and another us-
ing -fno-stack-protector and PCan instrumentation.
Our results indicate that PCan incurs a very low over-
head with a geometric mean of 0.30%. In some cases
-fstack-protector-strong caused the benchmarks, we
suspect this is caused by it rearranging the stack. Measure-
ments were repeated 20 times and all binaries were compiled
with -O2 optimizations enabled.

7.2 Security
The initial pacga canaries used by PCan provide similar
security to traditional canaries. To perform an overflow
while avoiding detectionA must achieve the following goals:
1) find the location of canaries in relation to the overflown
buffer, 2) leak the specific canary values on the stack, and

3https://www.spec.org/cpu2017/
4https://github.com/travitch/whole-program-llvm

3) write back the correct canaries when performing the buffer
overflow. In our adversary model step 1) is trivial; A can in-
spect the binary to analyze the stack layout. Step 2) could be
achieved by leaking or modifying the in-memory reference
values, but because PCan generates canaries on-demand, A
is forced to leak the values from the stack (R2). Moreover,
because the canaries are statistically unique to a function
and SP value A cannot rely on finding just any canary and
substitute it with one in the overflown stack frame (R1). This
limits the scope of attacks, as both the memory leak and over-
flow must happen within the lifetime of the attacked stack
frame. By using multiple canaries—one after each buffer—
PCan can detect overflows that only touch local variables
(R3). Based on our evaluation PCan thus provides compre-
hensive protection with an overhead similar to currently
deployed defenses.

8 Related Work
After the seminal article “Smashing the Stack for fun and
profit” [12], the notion of canaries as a protection against
buffer overflow was first introduced in StackGuard [2], and
initial GCC compiler support appeared at the same time.
StackGuard proposes to use a random canary, stored at the
top of the stack (or in the thread local storage memory area),
during program launch to thwart canary harvesting from
the compiled code. The threat of canary harvesting and the
added protection (especially for C) provided by terminator
canaries was identified shortly thereafter [3]. The problem
of canary copy and re-use was already identified by Etoh
and Yoda in 2000 [4], where the stack-frame based canary
protection was augmented by masking the canary value with
the function return address. Later, Strackx et al. [18] argue
against the futility of storing secrets in program memory,
which supports using PA to generate canaries dynamically.

Another shortcoming of canary integrity are cases when
the canary mechanism is subject to brute-force attacks, e.g.,
in the context of process forking. A could use the canaries
in forked child processes as oracles to perform brute-force
guessing of canary values. Published solutions against this
form of attack includes DynaGuard [13] and DCR [5]. Both
solutions keep track of canary positions in the code, and
re-initialize all canaries in a child process, at considerable
performance overhead. DCR optimizes the canary location
tracking by chaining canaries using embedded offsets - we
inherit this notion of chaining canaries from their work,
although we deploy these for canary validation whereas
DCR uses the mechanism for canary rewriting. By combin-
ing the SP in the canaries PCan mitigates such attacks, but
full protection would would require a similar approach of
re-initializing canaries on fork. Finally, the polymorphic ca-
naries by Wang et al. [20] optimize away the need to rewrite
canaries during fork, by adding a function-specific random

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Liljestrand, et al.

mask to the stack canary, which effectively removes the
opportunity for systematic canary brute-forcing.

Heap protection with canaries has received much less
attention than stack protection, possibly because the opti-
mal balance between validation and performance overhead
when canaries are applied to the heap remains an open prob-
lem. The first paper on the subject was Robertson et al. in
2003 [15], but a more recent mechanism — HeapSentry by
Nikiforakis et al. [11] puts effort on the unpredictability (ran-
domness) of the heap canaries. HeapSentry consists of a
wrapper for the allocator and a kernel module, and exhibits
overheads at around 12%. Pointer bounds checking schemes
offer protections stronger than canaries alone, but in com-
parison incur significant performance overheads [19].

9 Future Work
Our current approach only protects stack-based variables
with a static size. Canaries for dynamic allocations cannot
be verified in the prologue because they might be either out
of scope or overwritten by later dynamic allocations, and are
currently not used by PCan. To prevent attacks that corrupt
dynamic allocations, we propose to add instrumentation that
protects dynamic allocations based on their life-time, i.e.,
which verifies the associated canaries immediately when
the allocation goes out of scope. The existing LLVM alloca-
tion life-time tracking could be leveraged to implement this
addition without significant changes to the compiler.

We plan to refine and expand our canary approach by
using compile-time analysis—i.e., the StackSafetyAnalysis 5

of LLVM—to omit instrumentation of buffers that can be stat-
ically shown to be safe. In some cases A could achieve their
goal before function return, i.e., before the canary corruption
is detected. Such attacks could be detected earlier by utilizing
the StackSafetyAnalysis to add checks after vulnerable steps
during function execution, before the function epilogue.

We also plan to extend PCan instrumentation to cover
heap allocations, similar to HeapSentry [15]. Because the
PA-keys are managed by the kernel, PCan could be used for
HeapSentry-like consistency checks from within the kernel,
e.g., before executing system-calls.

10 Conclusion
Canaries are a well-established protection mecha-
nism against errors in memory-unsafe programs. We
present PCan, which provides hardware-assisted integrity-
protection for canaries, inhibiting the most prevalent canary-
circumvention techniques. Furthermore, we propose the
notion of fine-grained canaries, where canaries not only pro-
tect the return address, but also detect overflows in individual
data objects. We make available our compiler prototype
at https://github.com/pointer-authentication/PCan-llvm,
and measure its performance impact. Finally we point out
5https://llvm.org/docs/StackSafetyAnalysis.html

further optimizations for fine-grained canaries, as well a
solution path for protecting dynamic allocations.

11 Acknowledgments
This work was supported in part by the Intel Collaborative
Research Institute for Collaborative Autonomous & Resilient
Systems (ICRI-CARS), the Academy of Finland under grant
nr. 309994 (SELIoT), and a Google ASPIRE award.

References
[1] ARM Ltd. 2017. ARMv8 Architecture Reference Manual, for ARMv8-A

architecture profile (ARM DDI 0487C.a). https://static.docs.arm.com/
ddi0487/ca/DDI0487C_a_armv8_arm.pdf.

[2] Crispin Cowan et al. 1998. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. USENIX Security
’98. 63–78.

[3] Crispin Cowan et al. 1999. Protecting systems from stack smashing
attacks with StackGuard. Linux Expo (1999).

[4] Hiroaki Etoh and Kunikazu Yoda. 2000. Protecting from stack-smashing
attacks. Technical Report. IBM Research Division, Tokyo Research
Laboratory.

[5] William H Hawkins et al. 2016. Dynamic canary randomization for
improved software security. In Proc. ACM CISR ’16. 9:1–9:7.

[6] Hong Hu et al. 2016. Data-Oriented Programming: On the Expressive-
ness of Non-control Data Attacks. In Proc. IEEE S&P ’16. 969–986.

[7] Hans Liljestrand et al. 2019. Authenticated Call Stack. In Proc.
ACM/EDAC/IEEE DAC’19. Article 223.

[8] Hans Liljestrand et al. 2019. PAC it up: towards pointer integrity using
ARM pointer authentication. In Proc. USENIX Security ’19. 177–194.

[9] David Litchfield. 2003. Defeating the stack based buffer overflow
preventation mechanism of Microsoft Windows 2003 Server. In Black
Hat Asia ’03.

[10] Hector Marco-Gisbert and Ismael Ripoll. 2013. Preventing brute force
attacks against stack canary protection on networking servers. In Proc.
IEEE NCA ’13. 243–250.

[11] Nick Nikiforakis et al. 2013. HeapSentry: kernel-assisted protection
against heap overflows. In Proc. DIMVA 13’. 177–196.

[12] Elias Levy (Aleph One). 1996. Smashing the stack for fun and profit.
Phrack 7, 19 (1996). http://phrack.org/issues/49/14.html

[13] Theofilos Petsios et al. 2015. Dynaguard: Armoring canary-based
protections against brute-force attacks. In Proc. ACM ACSAC ’15. 351–
360.

[14] Qualcomm. 2017. Pointer Authentication on ARMv8.3.
https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8-3.pdf.

[15] William K Robertson et al. 2003. Run-time detection of heap-based
overflows. In Proc. USENIX LISA ’03. 51–60.

[16] Hovav Shacham. 2007. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proc. ACM CCS
’07. 552–561.

[17] Solar Designer. 1997. lpr LIBC RETURN exploit. http://insecure.org/
sploits/linux.libc.return.lpr.sploit.html

[18] Raoul Strackx et al. 2009. Breaking the memory secrecy assumption.
In Proc. ACM EuroSec ’09. 1–8.

[19] László Szekeres et al. 2013. SoK: Eternal war in memory. In Proc. IEEE
S&P ’13. 48–62.

[20] Zhilong Wang et al. 2018. To detect stack buffer overflow with poly-
morphic canaries. In Proc. IEEE/IFIP DSN ’18. IEEE, 243–254.

Publication V

Hans Liljestrand, Thomas Nyman, Lachlan Gunn, Jan-Erik Ekberg, N.
Asokan. PACStack: an Authenticated Call Stack. Submitted, 20 pages,
August 2019.

141

PACStack: an Authenticated Call Stack
Hans Liljestrand

Aalto University, Finland
Huawei Technologies Oy, Finland

hans.liljestrand@aalto.fi

Thomas Nyman
Aalto University, Finland
thomas.nyman@aalto.fi

Lachlan J. Gunn
Aalto University, Finland

lachlan@gunn.ee

Jan-Erik Ekberg
Huawei Technologies Oy, Finland

Aalto University, Finland
jan.erik.ekberg@huawei.com

N. Asokan
University of Waterloo, Canada

asokan@acm.org

ABSTRACT
A popular run-time attack technique is to compromise the control-
flow integrity of a program by modifying function return addresses
on the stack. So far, shadow stacks have proven to be essential for
comprehensively preventing return address manipulation. Shadow
stacks record return addresses in integrity-protected memory se-
cured with hardware-assistance or software access control. Soft-
ware shadow stacks incur high overheads or trade off security for
efficiency. Hardware-assisted shadow stacks are efficient and secure,
but require the deployment of special-purpose hardware.

We present authenticated call stack (ACS), an approach that uses
chained message authentication codes (MACs) to achieve compa-
rable security without requiring additional hardware support. We
present PACStack, a realization of ACS on the ARMv8.3-A archi-
tecture, using its general purpose hardware mechanism for pointer
authentication (PA). Via a rigorous security analysis, we show
that PACStack achieves security comparable to hardware-assisted
shadow stacks without requiring dedicated hardware. We demon-
strate that PACStack’s performance overhead is negligible (<1%).

1 INTRODUCTION
Traditional code-injection attacks are ineffective in the presence
of W⊕X policies that prevent the modification of executable mem-
ory [50]. However, code-reuse attacks can alter the run-time be-
havior of a program without modifying any of its executable code
sections. Return-oriented programming (ROP) is a prevalent attack
technique that corrupts function return addresses to hijack a pro-
gram’s control flow. ROP can be used to achieve Turing-complete
computation by chaining together existing code sequences in the
victim program. To prevent ROP, return addresses must be pro-
tected when stored in memory. At present, the most powerful pro-
tection against ROP is using an integrity-protected shadow stack
that maintains a secure reference copy of each return address [1].
Integrity of the shadow stack is ensured by making it inaccessible
to the adversary either by randomizing its location in memory or
by using specialized hardware [28]. Recent software-based shadow
stacks show reasonable performance [11], but are vulnerable to
an adversary capable of exploiting memory vulnerabilities to infer
the location of the shadow stack. To date, only hardware-assisted
schemes, such as Intel CET [28], achieve negligible overhead with-
out any security trade-offs. But employing such a custom hardware
mechanism incurs a development and deployment cost.

Recent ARM processors include support for general-
purposepointer authentication (PA); a hardware extension
that uses tweakable message authentication codes (MACs) to
sign and verify pointers [2]. One initial use case of PA is the
authentication of return addresses [47]. However, current PA
schemes are vulnerable to reuse attacks, where the adversary can
reuse previously observed valid protected pointers [35]. Prior
work [35, 47] and current implementations by GCC1 and LLVM2

mitigate reuse attacks, but cannot completely prevent them.
In this paper, we propose a new approach, authenticated call

stack (ACS), providing security comparable to hardware-assisted
shadow stacks, with minimal overhead and without requiring new
hardware-protected memory. ACS binds all return addresses into a
chain of MACs that allow verification of return addresses before
their use. We show how ACS can be efficiently realized using ARM
PA while resisting reuse attacks. The resulting system, PACStack,
can withstand strong adversaries with full memory access. Our
contributions are:
• ACS, a new approach for precise verification of function re-

turn addresses by chaining MACs (Section 5).
• PACStack, a LLVM-based realization of ACS using ARM PA with-

out requiring additional hardware (Section 6).
• A systematic evaluation of PACStack security, showing that its

security is comparable to shadow stacks (Section 7).
• Demonstrating that the performance overhead of PACStack

is negligible (<1%) (Section 8).
For realizing PACStack, we implemented an efficient authenticated
stack using ARM PA. This approach may be generalizable to other
data structures and applications (Section 10.1). We plan to make our
PACStack implemenation and associated evaluation code available
as open source.

2 BACKGROUND
2.1 ROP on ARM
In ROP, the adversary exploits a memory vulnerability to manipu-
late return addresses stored on the stack, thereby altering the pro-
gram’s backward-edge control flow. ROP allows Turing-complete at-
tacks by chaining together multiple gadgets, i.e., adversary-chosen
sequences of pre-existing program instructions that together per-
form the desired operations. ARM architectures use the link register

1https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-Attributes.html
2https://reviews.llvm.org/D49793

1

Liljestrand, et al.

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

Figure 1: PA uses an embedded authentication token based
on the pointer’s address, a modifier, and a key.

(LR) to hold the current function’s return address. LR is automati-
cally set by the branch with link (bl) or branch with link to register
(blr) instructions that are used to implement regular and indirect
function calls. Because LR is overwritten on call, non-leaf functions
must store the return address onto the stack. This opens up the
possibility of ROP on ARM architectures [30].

2.2 ARM Pointer Authentication
The ARMv8.3-A PA extension supports calculating and verifying
pointer authentication codes (PACs) [2]. A pac instruction calcu-
lates a keyed tweakable MAC, HK(AP ,M), over the address AP of
a pointer P using a 64-bit modifier M as the tweak. The resulting
authentication token, referred to as a PAC, is embedded into the un-
used high-order bits of P . It can be verified using an aut instruction
that recalculates HK(AP ,M), and compares the result to P ’s PAC.

Since the PAC is stored in unused bits of a pointer, its size is
limited by the virtual address size (VA_SIZE in Figure 1) and whether
address tagging is enabled [2]. On a 64-bit ARM machine running
a default Linux kernel, VA_SIZE is 39, which leaves 16 bits for
the PAC when excluding the reserved and address tag bits. PA
provides five different keys; two for code pointers, two for data
pointers, and one for generic use. Each key has a separate set of
instructions3, e.g., the autia and pacia instructions always operate
on the instruction keyA, stored in the APIAKey_EL1 register. Access
to the key registers and PA configuration registers can be restricted
to a higher exception level (EL). Linux v5.04 adds full support for
PA, such that the kernel (at EL1) manages user-space (EL0) keys
and prevents EL0 from modifying them.

As currently specified, PA does not cause a fault on verification
failure; instead, it strips the PAC from the pointer P and flips one
of the high-order bits such that P becomes invalid. If the invalid
pointer is used by an instruction that causes the pointer to be
translated, such as load or instruction fetch that dereferences the
pointer, the memory management unit issues a memory translation
fault.

PA also supports the generic pacga instruction, which outputs
a 32-bit PAC based on a 64-bit input value and a 64-bit modifier.
There is no corresponding verification instruction. To verify the
pacga PAC, instrumented code must explicitly compare it to the
expected value.

2.2.1 PA-based return address protection. Return address protec-
tion is the first published PA-based control-flow protection [47]. It is
implemented as the -msign-return-address feature of GCC and

3A full list of PA instructions from [35] is available in Appendix D.
4https://kernelnewbies.org/Linux_5.0#ARM_pointer_authentication

1 epilogue:
2 paciasp ; sign LR ❶

3 str LR, [SP] ; push LR onto stack
4 function_body:
5 ...
6 epilogue:
7 ldr LR, [SP] ; pop stack onto LR
8 autiasp ; verify LR ❷

9 ret

Listing 1: The -msign-return-address feature in GCC and
LLVM/Clang uses PA to sign and verify the return address
in LR when storing and loading it from the stack.

LLVM/Clang.5 An authenticated return address is computed using
paciasp (❶ in Listing 1) and verified with autiasp (❷ in Listing 1).
These instructions implicitly use the value of stack pointer (SP) as
the modifier. An adversary cannot create the correct PAC for an
arbitrary pointer and therefore cannot modify the return address
without causing a fault on function return.

The -msign-return-address feature and other prior PA-based
solutions are vulnerable to reuse attacks where an adversary re-
places a valid authenticated return address with another authenti-
cated return address previously read from the process’ memory. For
a reused PAC to pass verification, both the original and replacement
PAC must have been computed using the same PA key and modifier.
This applies to any PA scheme, not only authenticated return ad-
dresses. For instance, if a constant modifier is used then all pointers
based on the same key are interchangeable. Using only the SP value
as a modifier reduces the set of interchangeable pointers, but still
allows reuse attacks when SP values coincide. Reuse attacks can be
mitigated, but not completely prevented, by further narrowing the
scope of modifier values [35].

3 ADVERSARY MODEL
In this work, we consider a powerful adversary, A, with arbitrary
control of process memory but restricted by a W⊕X policy. There-
fore A can read all process memory, but write operations and
execution are restricted such that A can neither modify program
code nor execute memory pages reserved for data (e.g., the pro-
gram stack). This adversary model is consistent with prior work
on run-time attacks [50].

These abilities allow A to modify any pointer in the process
data memory pages. In particular, A can modify function return
addresses while they reside on the program call stack.

In this work, we exclude adversaries with kernel mode privilege
escalation capabilities, i.e., A cannot undermine kernel integrity
or confidentiality. As a consequence, A cannot modify or read
sensitive data in kernel memory or kernel-managed registers, such
as the PA keys. As in prior work on control-flow integrity (CFI), we
do not consider non-control data attacks [13], such as data-oriented
programming (DOP) [26].

5https://gcc.gnu.org/gcc-7/changes.html and https://reviews.llvm.org/D49793
2

PACStack: an Authenticated Call Stack

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

Figure 2: ACS is an chained MAC of tokens authi , i ∈ [0,n − 1] that are cryptographically bound to the corresponding return
addresses, reti , i ∈ [0,n], and the last authn .

4 REQUIREMENTS & ASSUMPTIONS
Our goal is to thwart A who modifies function return addresses
on the call stack in order to hijack the program control flow. We
define the following requirements for our solution:

R1 Return address integrity: Detect if a function return address
has been modified while in program memory.

R2 Memory disclosure tolerance: Remain effective even when A
can read the entire process address space.

R3 Compatibility: Be applicable to typical (standards-compliant)
C code, without requiring source code modifications.

R4 Performance: Impose only minimal run-time performance
and memory overhead, while meeting R1–R3.

We make the following assumptions about the system:
A1 A W⊕X policy that protects code memory pages from modifi-

cation by non-privileged processes. W⊕X is today supported
by all major processor architectures, including ARMv8-A.

A2 Coarse-grained forward-edge CFI. We assume that ACS is
combined with a CFI solution that restricts forward control-
flow transfers to a set of valid targets. Specifically, we assume
that indirect function-calls always target the beginning of
a function and that indirect jumps to arbitrary addresses
is infeasible. This property can be satisfied by several pre-
existing software-only CFI solutions with reasonable over-
head [1, 18, 31, 37], as well as with negligible overhead by
using hardware-assisted mechanisms like ARM PA itself [35],
branch target indicators [2], or TrustZone-M [5, 40].

Coarse-grained forward-edge CFI (A2) and W⊕X (A1) are used to
preventA from tampering with the instrumentation that maintains
the ACS, as discussed in Section 7.2.

5 DESIGN: AUTHENTICATED CALL STACK
In this section we present our general design for ACS, not tied to a
particular hardware-assisted mechanism. In Section 6, we present
our implementation that efficiently realizes ACS using PA. While
PA approximates pointer integrity it falls short when the modifier is
not unique to a pointer. Our key idea is to provide a modifier for the
return address by cryptographically binding it to all previous return
addresses in the call stack. This makes the modifier statistically
unique to a particular control-flow path, thus preventing reuse-type
attacks and allowing precise verification of return addresses.

Recall that on ARM systems, the return address is initially
stored in LR, which cannot be manipulated by A (Section 2.1).
However, non-leaf functions need to store their return address on
the stack before invoking a nested function. The return addresses
reti , i ∈ [0,n − 1] (where n is the depth of the call stack in terms of

stack-frame2

stack-frame1

auth0
ret1

stack-framei

authi-1
reti

authi := HK(reti, authi-1)
:= HK(reti, HK(reti-1, authi-2))
…

stack-frame0

ret0

auth1 := HK(ret1, auth0)
:= HK(ret1, HK(ret0, 0))

auth2 := HK(ret2, auth1)
:= HK(ret2, HK(ret1, auth0))
:= HK(ret2, HK(ret1, HK(ret0, 0)))

auth0 := HK(ret0, 0)

Figure 3: ACS stores return addresses and intermediate au-
thentication tokens, authi , i ∈ [0,n − 1], on the stack. Only
the last token (authn) needs to be securely stored.

active function records) must thus always be stored on the stack,
where A can modify them by exploiting memory vulnerabilities.
ACS protects these values by computing a series of chained au-
thentication tokens authi , i ∈ [0,n] that cryptographically bind
the latest authn to all return addresses reti , i ∈ [0,n − 1] stored
on the stack (Figure 2). Only the MAC key and the last authentica-
tion token authn must be stored securely to ensure that previous
auth tokens and return addresses can be correctly verified when
unwinding the call stack. We use a tweakable MAC function HK to
generate a b-bit authentication token authi :

authi =

{
HK(reti ,authi−1) if i > 0
HK(reti , 0) if i = 0

authn is maintained in a register unmodifiable by A. Figure 3
shows how authentication tokens and return addresses are stored
on the call stack. On function calls, authi is retained across the
call to the callee, which calculates authi+1 and stores both authi
and the corresponding return address reti+1 on its stack frame. On
return, auth′i−1 and ret ′i values are loaded from the stack and are
verified by comparing HK(auth′i−1, ret

′
i) to authi . If the results differ,

then one or both of the loaded values have been corrupted (R1).
Otherwise, they are valid—i.e., auth′i−1 = authi−1 and ret ′i = reti—
in which case authi is replaced with the verified authi−1 in the
secure register before the function returns to reti .

3

Liljestrand, et al.

CPU registers

LR CR

f1 stack

f2 stack

authi-1

reti

f1:
CR LR=authi-1

call f2 // sets LR reti

asd

LR CR=authi-1

…

f2:
stack  LR=reti, CR=authi-1

LR  HK(LR =reti, CR =authi-1)
…
…
CR, R  auth'i, ret'i-1 from stack
iff LR=reti equals HK(R=ret’i, CR=auth'i-1)

return to R
abort

Figure 4: To maintain the integrity of ACS the last authen-
tication token is maintained and retained through function
calls in the designated CR. The notation x ′ indicates that x is
read from the stack and may have been compromised.

5.1 Authenticated return addresses
We can avoid the need to maintain separate auth and ret values by
defining a combined authenticated return address:

areti = authi ∥ reti ,where

authi =

{
HK(reti ,areti−1) if i > 0
HK(reti , 0) if i = 0

We call authi and the corresponding areti valid if they are equal
to HK(reti ,areti−1) for some given areti−1.

In this variant, not only the current authentication token, but
also the current return address are securely stored. Because the
plain return address reti is never stored on the stack, A is limited
to manipulating the earlier authenticated return addresses on stack,
i.e., areti , i ∈ [0,n−1]. A compromised authenticated return address
must therefore pass two authentications before use: first when being
restored from the stack, and second, when being used as the target
of a function return. We discuss the security properties in Section 7.

The remainder of Section 5 will focus on aret , but unless other-
wise noted, similar properties also apply for separate auth tokens.

5.2 Securing the authentication token
The current authenticated return address aretn , is secured by keep-
ing it exclusively in a CPU register. On processors with a dedicated
link register, LR can be used to store aret ; otherwise an additional
register must be reserved for this purpose. On function calls, aret
must be securely retained during a function call that overwrites
LR. This is done by modifying the calling convention such that
aret is kept in a specific register which we call a chain register (CR)
(Figure 4).

ACS protects the integrity of backward-edge control-flow trans-
fers. Combined with coarse-grained forward-edge CFI (Assump-
tion A2), it ensures that: 1) immediately after function return, the
aretn in CR is valid, 2) at function entry the aretn−1 stored in CR
is valid, and 3) LR is always used as or set to a valid aret . This
ensures that token updates are done securely, and that the ACS
instrumentation cannot be bypassed or used to generate arbitrary
authenticated return addresses.

5.3 Mitigation of hash-collisions:
authentication token masking

Though aretn is protected by hardware, the fact that it is embedded
in the return pointer means that the size b of the authentication to-
ken auth is limited by the pointer address size. This is significant, as
collisions can be found afterA has seen, on average, approximately
1.253 · 2b/2 tokens [48, Section 1.4.2] (e.g., 321 tokens for b = 16).
Despite this, we can still prevent A from recognizing collisions,
thus forcingA to guess which authenticated return addresses yield
a collision, succeeding with a probability 2−b . The auth of any aret
stored on the stack is masked using a pseudo-random value derived
from the previous aret value:

authi = HK(reti ,areti−1) ⊕ HK(0,areti−1).
The mask HK(0,areti−1) is exclusive-OR-ed with HK(reti ,areti−1) af-
ter it is generated and before it is authenticated, thereby preventing
A from identifying opportunities for pointer reuse.

5.4 Mitigation of brute-force guessing:
re-seeding authentication token chain

A brute force attack against PA where A guesses a PAC correctly
succeeds with probability p for a b-bit PAC after log(1−p)

log(1−2−b) guesses,
on the assumption that an authentication attempt of an incorrect
PAC terminates the program and subsequent program runs receive
a new, random set of PA keys [35] (the current behavior in Linux
5.0).

However, currrently pre-forked or multithreaded programs share
the PA key between the parent and sibling processes / threads. This
could allow A to target a vulnerability in a sibling, and unless a
failed authentication terminates the entire process tree that shares
the PA key, A can attempt a new guess against another sibling
process. In this scenario, 2b−1 guesses on average are enough to
guess a b-bit PAC [35].

Multi-threaded applications are also affected since address trans-
lation errors due to PAC authentication failures are delivered in
Linux via the SIGSEGV signal which is always directed agains the
offending thread6, and the thread cannot change the signal’s dispo-
sition such that it would not be delivered.

Liljestrand et al. [35] recommend hardening pre-forking and
multi-threaded applications against guessing attacks by having the
application restart all of its processes if the number of PAC failures
in child processes exceeds a pre-defined threshold. Since ACS does
not exhibit false positives in a typical program (a corrupt return
address is a strong indication that the process is being subject
to a run-time attack), we recommend an alternative mitigation
specific to ACS: "re-seeding" the auth calculation after a fork or
thread creation. For example, calculating auth0 = HK(ret0,pid/tid)
where the pid / tid corresponds to the process or thread ID, or any
other value unique to the task. This solution is straightforward to
apply to threads, as a return from the function starting the thread
causes the thread to exit. Therefore, the ACS for the thread stacks
can be made disjoint from the main ACS chain. Forked processes
may include auth tokens generated by the parent process in stack
frames inherited from the parent. If a child process never returns to

6http://man7.org/linux/man-pages/man7/signal.7.html
4

PACStack: an Authenticated Call Stack

1 #include <setjmp.h>
2
3 jmp_buf ebuf;
4
5 void try_catch () {
6 int err;
7
8 if (!(err = setjmp(ebuf))) { // iff ebuf set ➀

9 checked_func (); // after setjmp
10 } else {
11 handle_error(err); // after longjmp ➁

12 }
13 }
14
15 void checked_func () {
16 // ...
17 longjmp(ebuf , E_NUM); // throw exception ➂

18 // ...
19 }
20
21 int main() {
22 try_catch ();
23 longjmp(ebuf , E_NUM); // undefined behavior! ➃

24 }

Listing 2: setjmp / longjmp allows the programmer to trans-
fer execution to another location, potentially in another
function. The location, and the state of the environment af-
ter the transfer, is determined by an in-memory buffer con-
taining the calling environment of a previous setjmp call.
Calling longjmp after the calling environment is destroyed
results in undefined behavior.

inherited stack frames, re-seeding any new auth tokens beyond the
point of the fork is sufficient. However, if the child process returns
to inherited stack frames, the ACS must be re-seeded starting from
auth0 by rewriting any auth tokens in pre-existing stack frames;
similar to some stack canary re-randomization schemes [24, 45].

5.5 Irregular stack unwinding
The C standard includes the setjmp / longjmp programming in-
terface, which can be used to add exception-like functionality to
C (Listing 2). The longjmp C function executes a non-local jump
to a prior calling environment stored using the setjmp function.
At setjmp, callee-saved registers (whose values are guaranteed to
persist through function invocations), as well as the stack pointer
SP and return address are stored in the given jmp_buf buffer (➀ in
Listing 2). setjmp returns 0 to indicate that execution is continuing
directly after the call. Upon executing longjmp, the environment
is restored from jmp_buf (➂); program execution continues at the
setjmp return site with a non-zero value (➁).Calling longjmp us-
ing an expired buffer, i.e., after the corresponding setjmp caller
has returned (➃), results in undefined behavior (the implications of
this are discussed in Section 10.2). Because jmp_buf also stores the
latest authenticated token, ACS needs a mechanism to ensure its
integrity when using setjmp and longjmp.

1 call -site
2 mov X28 , LR ; CR← authi ❶

3 bl @func ; LR← r eti+1 ❷

4 mov LR, X28 ; LR← authi ❸

Listing 3: PACStack retains the last auth / aret via CR, defined
as the general purpose register X28.

When stored in memory, the integrity of jmp_buf cannot be
guaranteed. Nonetheless, the stored areti is bound to the corre-
sponding areti−1 on the setjmp caller’s stack. This ensures that
longjmp always restores a valid ACS state. To limit the set of values
A can inject into jmp_buf, we replace the setjmp return address
retb in jmp_buf with aretb , defined as:

aretb = (HK(retb ,areti) ∥ retb) ⊕ HK(SPb ,areti),
where SPb is the SP value stored in jmp_buf. When executing
longjmp, aretb is recalculated based on the buffer values to verify
that the stored areti was stored by a setjmp. A cannot generate
the aretb value for an arbitrary areti , nor replace aretb with a
previously observed areti . However, because longjmp explicitly
allows jumping to prior states, ACS cannot ensure that the target is
the intended one, i.e., A could substitute the correct jmp_buf with
another. Shadow stacks share a similar limitation [17], and cannot
guarantee that the intended state has been reached, only that the
return address (and stack pointer) in that state is intact.

6 IMPLEMENTATION: PACSTACK
We present PACStack, an ACS realization using ARMv8.3-A PA.
PACStack is based on LLVM 7.0 and integrated into the 64-bit ARM
backend, used via llc, the LLVM static compiler. PACStack adds
two compilation passes: 1) to instrument function calls for aret
propagation, and 2) to instrument function prologues and epilogues.
The instrumentation is applied by passing the -pafss-ng flag to
llc when transforming LLVM bitcode to target-specific assembly.
We plan to add PACStack support to Clang Compiler source code
is available at https://pacstack.github.io

6.1 Function call instrumentation
Recall from Section 5 that ACS can be implemented using separate
auth and ret tokens (variant 1), or using a combined authenticated
return address (variant 2).

In both PACStack variants, we designate the general purpose
register X28 as the chain register (CR) and reserve it for instrumen-
tation use. PACStack instruments call sites to move auth (variant 1)
or aret (variant 2) to CR (❶ in Listing 3) in order to retain its value
through function calls that overwrite link register (LR) (❷). After
function return the contents of CR are restored to LR (❸).

The advantage of using X28 is that it is a callee-saved register.
Whenever a function uses a callee-saved register, it must also ensure
that the old value is restored before return. By using X28 as CR,
PACStack can be transparently mixed with uninstrumented code
(either PACStack-instrumented applications using uninstrumented
libraries, or vice-versa). We discuss the security implications of
mixing instrumented and uninstrumented code in Section 10.3.

5

Liljestrand, et al.

1 prologue:
2 stp X28 , LR , [SP] ; stack← authi−1, r eti
3 pacga LR , LR , X28 ; LR← authi ❶

4 function_body:
5 ...
6 epilogue:
7 ldp X28 , Xr , [SP] ; CR, Xr← auth′i−1, r et

′
i from stack❷

8 pacga Xd , Xr , X28 ; Xd← auth′i ❸

9 cmp Xd , LR ; if (auth′i , authi) ❹

10 jnz abort ; then abort
11 ret Xr ; return via Xr to r eti

Listing 4: Variant 1 of PACStack generates and verifies auth
tokens using pacga (❶ and ❸). Both authi−1 and reti are
stored on the stack, and are hence validated against authi
on function return (❷). Where possible, the store pair (stp) /
load pair instructions (ldp) are used to minimize the latency
for successive loads / stores.

Our current PACStack implementation reserves X28 exclusively
for instrumentation use because the LLVM 7.0 implementation pre-
vents LR-use without substantial changes to compiler internals7.
However, we expect the performance cost to be negligible, as cases
where the compiler needs to utilize all callee-saved registers (X19-
X29) are infrequent. Note that reserving exclusive use of a register
has also been proposed for shadow stacks on the x86 architec-
ture [11], even though x86 has fewer general purpose registers
compared to 64-bit ARM processors. Unlike shadow stacks, ACS
in general can avoid consuming additional registers by using LR to
store auth (variant 1, Section 6.2) or aret (variant 2, Section 6.2).

6.2 Authenticated return addresses with PA
Variant 1: generating auth with pacga. In this variant, we use
pacga to generate auth tokens:

Xd← authi =

{
pacga(Xd, LR = reti , CR = authi−1) if n > 0
pacga(Xd, LR = reti , CR = any) if n = 0

To generate and verify authentication tokens, PACStack instru-
ments function prologues and epilogues (Listing 4). In the function
prologue, authi−1 and reti (in CR and LR, respectively) are stored
on the function stack frame and then used to generate a new authi
with pacga (❶). The authi−1 and reti values are then stored on the
function stack frame. Before function return, PACStack verifies the
auth′i−1 and ret ′i read from the stack by calculating the correspond-
ing auth′i (❸) and comparing it to authi , stored in LR (❹). For auth0
any value currently in CR is used and stored for later validation.
This allows PACStack to operate without explicit initialization by
the C Library (libc) startup code. To enable re-seeding the auth
token chain (Section 5.4), the process and thread initialization, and
fork() wrapper in libc should be modified to set the initial value
of CR accordingly.

Variant 1 can efficiently compute 32-bit authentication tokens
values using pacga. However, it has two drawbacks: First, an addi-
tional stack store / load is added for the 4-byte token; to preserve the

7https://github.com/llvm/llvm-project/blob/llvmorg-7.0.0/llvm/lib/Target/AArch64/
AArch64CallingConvention.td#L278

1 prologue:
2 str X28 , [SP] ; stack ← areti−1 ➀

3 pacib LR, X28 ; LR← areti ➁

4 function_body:
5 ...
6 epilogue:
7 ldr X28 , [SP] ; CR← aret ′i−1 from stack ➂

8 autib LR, X28 ; LR← (r eti or r et ∗i) ➃

9 ret

Listing 5: At function entry, PACStack stores the prior
areti−1 on the stack (➀) and generates the new areti (➁).
Before return, areti−1 is loaded from the stack (➂) and
verified against areti (➃). On verification failure, LR is set to
an invalid address ret∗i , causing a fault on return.

callee-saved behavior of CR, the full 8-byte register content must be
stored on the stack. Second, the output of pacga must be explicitly
checked using a comparison and a conditional branch instruction.
For this reason, our current implementation only supports variant 2
below. However, in Section 10.1 we discuss using pacga to bind
other stack-based write-once data to a specific ACS state.

Variant 2: generating aret with autib. In this variant, we use
pacib and autib instructions to efficiently calculate and verify ACS
authenticated return addresses (Listing 5). These instructions differ
from pacga in that the output is an authenticated return address
which is directly written to LR:

LR← areti =

{
pacib(LR = reti , CR = areti−1) if i > 0
pacib(LR = reti , CR = any) if i = 0

The corresponding verification is similar, and defined as:

LR← autib(LR = areti , CR) =
{
reti if HK(reti , CR) = authi

ret∗i otherwise,

where autibwill automatically handle verification errors by setting
LR to an unusable address ret∗i . No additional checking is needed;
executing a return to ret∗i causes a address translation fault (Sec-
tion 2.2). In variant 2, PACStack requires no additional stack space
as areti−1 is stored on the stack in place of reti , not in addition to
it. The value of CR for aret0 is handled identically as in variant 1
for auth0.

6.3 Mitigating hash collisions: PAC masking
To preventA from identifying PAC collisions that can be reused to
violate the integrity of the call stack, PACStack masks all authenti-
cation tokens values before storing them on the stack (Listing 6). A
pseudo-random value is obtained by generating a PAC for address
0x0, pacib(0,areti−1) (❶, ❸).

By using pacib we efficiently obtain a pseudo-random value
that can be directly applied to the authentication token part of aret
using only an exclusive-or instruction (eor).

Because this construction uses the same key to generate both
authentication tokens and masks, A must not obtain an areti for a
reti = 0x0 and any existing areti−1. PACStack will never generate
such aret values, as the return address never points to memory
address zero. To prevent leaking the mask directly, it is cleared after

6

PACStack: an Authenticated Call Stack

1 prologue:
2 str X28 , [SP] ; stack ← areti−1
3 pacib LR , X28 ; LR← aretunmasked

i
4 mov Xd , X28 ; Xd← areti−1
5 mov X28 , #0 ; CR← 0
6 pacib X28 , Xd ; CR←maski ❶

7 eor X28 , X28 , LR ; CR←maski ⊕ aretunmasked
i ❷

8 function_body: ; = areti
9 ...

10 epilogue:
11 ldr Xd , [SP] ; Xd← aret ′i−1 from stack
12 mov LR , #0 ; LR← 0
13 pacib LR , Xd ; LR←mask ′i ❸

14 eor LR , LR, X28 ; LR←mask ′i ⊕ areti ❹

15 mov X28 , Xd ; CR← aret ′i−1
16 autib LR , X28
17 ret

Listing 6: PACStack masks authentication tokens to prevent
A from detecting PAC collisions. The mask is created in
CR with pacib(0,areti−1) (❶), and exclusive-OR-ed with the
unmasked authentication token (❷). On return, the mask
is recreated (❸) and applied to the masked authentication
token areti−1 (❹) before verification.

use. We can thus be certain that no HK(0, x) value is visible to A
nor possible to pre-compute without the confidential PA key.

This approach to masking requires two additional PAC calcu-
lations for each function activation. Our current implementation
supports this as an optional feature that can be invoked using the
-pafss-ng-cp flag.

6.4 Irregular stack unwinding
PACStack binds jmp_buf buffers to the areti at the time of setjmp
call by replacing the setjmp return address retb with its authenti-
cated counterpart aretb (Section 5.5). The libc implementation is
not modified; instead setjmp / longjmp calls are replaced with the
wrapper functions in Listings 7 and 8.

The setjmp_wrapper wrapper function (Listing 7) executes
setjmp and updates the buffer with aretb . PACStack generates
aretb based on the current SP value, CR and the setjmp return ad-
dress; this avoids the need to read the values setjmp has stored.
The longjmp_wrapper (Listing 8) retrieves aretb , areti , and the SP
values from the buffer. It then verifies the values and writes retb
into jmp_buf.

6.5 Multi-threading
The values of ARMv8-A general purpose registers are stored in
memory when entering EL1 (i.e. kernel-mode) from EL0 (i.e. user-
mode), for example during context switches and system calls. This
must not allow A to modify the aret values or read the mask,
which are both exclusively in either CR or LR during execution (List-
ings 5 and 6), but must be stored in memory during the context
switch. On ARMv8-A, system calls are implemented using the su-
pervisor call instruction (svc) that switches the CPU to EL1 and
triggers a configured handler. On 64-bit ARM, Linux v5.0 uses the

1 setjmp_wrapper:
2 ... ; Xb← jmp_buf
3 bl <setjmp >
4 ret_b:
5 cbz X0, <return > ; exit iff after longjmp
6 mov Xd, <ret_b > ; Xd← r etb
7 mov X28 , SP; ; Xd← SPb
8 pacib Xd, LR; ; Xd← pacib(SPb , areti)
9 pacib X28 , LR; ; CR← pacib(r etb , areti)

10 eor X28 , X28 , Xd; ; CR← aretb
11 str X28 , [Xb, #r] ; replace return in jmp_buf
12 return:
13 ...

Listing 7: PACStack redirects setjmp calls to its own
setjmp_wrapper that binds the return address and areti
in jmp_buf to the current stack frame and corresponding
areti−1. #r is the offset of the return address within jmp_buf.

1 longjmp_wrapper:
2 ... ; Xb← jmp_buf
3 ldr X28 , [Xb, #a] ; CR← aret ′i
4 ldr LR, [Xb, #r] ; LR← aret ′b
5 ldr Xd, [Xb, #s] ; CR← SP ′b
6 autib Xd, LR; ; Xd← autib(SP ′b , aret ′i)
7 autib X28 , LR; ; CR← autib(aret ′b , aret ′i)
8 eor X28 , X28 , Xd; ; CR← r etb
9 str X28 , [Xb, #r] ; replace return in jmp_buf

10 bl <longjmp >
11 ...

Listing 8: Before longjmp, the PACStack longjmp_wrapper
checks the binding of the aret ′b , ret ′b and sp′b values stored
in jmp_buf.A cannot generate aret ′b for arbitrary values and
therefore cannot inject them in jmp_buf. #r, #a and #s are the
offsets to retb , CR, and reti within jmp_buf.

kernel_entry8 macro to store all register values on the EL1 stack,
where they cannot be accessed by user-space processes. During
context switches, callee-saved registers (including CR) and LR are
stored in struct cpu_context9 which belongs to the in-kernel
task structure and cannot be accessed by user space. The CR and
LR values of a non-executing task are thus securely stored within
the kernel, beyond the reach of other processes or other threads
within the same process. Thus, no kernel modifications are needed
to securely apply PACStack to multi-threaded applications.

7 SECURITY EVALUATION
We address two questions in this section:
1) Is the ACS scheme cryptographically secure?
2) Do ACS’s guarantees hold when instantiated as PACStack?

8https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/
kernel/entry.S?h=v5.0
9https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/
include/asm/processor.h?h=v5.0

7

Liljestrand, et al.

7.1 ACS security
A generic representation of an attack against ACS is shown in
Figure 5. Under normal operation, function C returns to A if called
from A (Figure 5a); i.e., when called from A, the return address ofC
is an address retA in A. The goal of A (Figure 5b) is to cause C to
return to some other address retB .

Since the authenticated return address aretA containing retA
is protected from A, in order to perform a backward-edge
control-flow attack, A must achieve two goals successfully:

AG-Jump: Obtain an authenticated return address aretB ,
valid with respect to some known modifier, which will validate
successfully when C returns.

AG-Load: Violate the integrity of the call stack such that the
LR register is loaded with aretB from AG-Jump rather than the
correct authenticated return address aretA.

This requires two returns: one from a ‘loader’ function to load
A’s aretB into LR, and another from C to the return address retB
contained in aretB .

In the analyses below, we treat the auth token HK(P,m) as a ran-
dom oracle with respect to both the pointer P and modifierm. This
means that if HK(P,m) has never been computed by a function call,
HK(P,m) will match any value with probability 2−b . In the analysis
below we assume that programs that share the same PA keys be-
tween multiple processes or threads employ the mitigation strategy
against brute-force attacks described in Section 5.4. This assump-
tion and the design of ACS ensure that there is no authentication
oracle available: the only way to test whether an auth token is
valid with respect to some address and modifier is to attempt to
return using the address and token, triggering a crash if the token
is incorrect.

The difficulty of achieving these goals therefore depends on
whether A’s desired control-flow violation follows the call graph
of the program and whether auth tokens are masked. Violating
control-flow integrity while still traversing the call graph is easier
because this allows A to harvest auth tokens and search for colli-
sions; violations that do not follow the call graph are more difficult
because they require that A make one or more guesses, risking a
crash.

7.1.1 Violations that follow the call graph. As A can harvest au-
thenticated return pointers when they are written to the stack, the
short auth tokens mean that in the absence of masking an attacker
can violate the integrity of the call stack by finding collisions in
HK(·, ·).

In order to achieve goal AG-Load,A must find two authenticated
return addressesaretA andaretB , such that i) they are both returned
to by a functionC , ii) thatC contains a call-site to the loader function
with a corresponding return address retC , and iii) such that

HK(retC ,aretA) = HK(retC ,aretB) = authcollision. (1)

Note that the collisions must be for different values in the second
argument only, since that is the value in A’s control. Collisions
that require different values for retC cannot be exploited because
retC is in CR and cannot be modified by A.

The auth tokens contained in aretA and aretB depend on the
path that A has taken through the call graph. A can obtain as
many auth tokens with retC as a pointer as there are distinct exe-
cution paths leading to C . The number of such paths will explode
combinatorially as the complexity of the program increases, and
cycles in the call graph—as occur in Figure 5—make the number of
paths essentially infinite, limited only by available stack space.

Having found such a collision, A then arranges for function C
to be called, traversing the call graph in such a way that it is set up
to return to A using aretA. Then, when the functionC calls into the
loader function, it will set LR to aretC . When the loader function
returns to retC , it will attempt to load aretA from the stack. Instead,
A substitutes aretB , which because of (1) will validate correctly
when returning to retC. Since aretB is a valid authenticated return
address, C will successfully return to retB , thereby violating the
integrity of the call stack.

More concretely, after collecting q auth tokens, according to the
birthday paradox [48, Section 1.4.2], the probability that some pair
collides is:

pcollision(q) = 1 − 2b !
(2b − q)! · 2q ·b

This quickly approaches 1 as A collects more tokens, on average
occurring after obtaining

q =

√
π2b

2

tokens. With a 16-bit PAC, A will therefore obtain a collision after
harvesting 321 pointers on average.

In order to successfully mount the above attack, A must find
two colliding auth tokens and perform the substitution. Without
masking, A can read the auth token from the stack. A can then
keep collecting auth tokens until they find two that collide; since
these are both valid pointers, A will always succeed once this
occurs, thus

P[AG-Load|Collision] = 1.
With masking A cannot identify auth token collisions: aretA

and aretB have different mask values HK(0,aretA) and HK(0,aretB).
Therefore it is impossible to identify a collision with a probability
than by random selection. This means that A will succeed in the
attack above with a probability of 2−b . We give a detailed proof in
Appendix A.

In practice, this means thatA can use this attack to traverse the
program’s call graph, but cannot jump to an address that is not a
valid return address for C function.

7.1.2 Violations that leave the call graph. We now consider A’s
probability of success when attempting to return to an address retB
in a way that that does not follow the program’s call graph.

In this case, the path from B to C has not been traversed,
and the instrumentation has never before computed the auth
token HK(retC ,aretB). Therefore, A succeeds at AG-Load—i.e.,
HK(retC ,aretB) = HK(retC ,aretA)—with probability P[AG-Load] =
2−b , irrespective of whether the substituted aretB is a valid authen-
ticated return address. On failure, which has probability 1 − 2−b ,
the process will crash.

8

PACStack: an Authenticated Call Stack

C

BA

Correct control flow

(a) Normal control flow.

C

loader

BA

AG-Load

AG-Jump

Correct control flow

(b) A’s desired control flow.
Figure 5: Anatomy of a backward-edge control-flow attack against ACS. In order to force functionC to return to B instead of its
caller A, A substitutes their authenticated return address aretB when some function—the ‘loader’—returns to retC in function
C (goal AG-Load). If aretB is valid with respect to some known modifier, then at the end of functionC the program will return
to the corresponding retB (goal AG-Jump).

Violation type No masking Masking
On-graph 1 2−b

Off-graph to call-site 2−b 2−b
Off-graph to arbitrary address 2−2b 2−2b

Table 1: Maximum probability of success various call-stack
integrity violations with and without masking.

A’s probability of then achieving goal AG-Jump depends on
whether retB is the return address of a valid call-site. If it is, then
A can obtain a valid authenticated return pointer for that loca-
tion in the same way as in Section 7.1.1, thereby succeeding with
probability P[AG-Jump] = 1. If retB has never been used as a re-
turn address, then no auth token has ever been generated for that
pointer. Therefore, AG-Jump is achieved with probability at most
P[AG-Jump] = 2−b ; otherwise, the process crashes.
A can therefore succeed with probability 2−b when the return

address is a valid call-site return address, or with probability of
2−2b when the return address is not.

We summarize our results in Table 1.

7.2 Run-time attack resistance of PACStack
PACStack must ensure the integrity of aretn and the confidentiality
of the masks. The former is achieved by storing aretn in LR or
CR, reserved for this purpose, used by regular code, and hence
inaccessible to A (Section 6.1). The latter is maintained as the
mask is re-generated each time it is needed, only stored in LR, and
cleared after use (Section 6.3). This holds true also in multi-threaded
environments (Section 6.5).

Recent results have shown that traditional CFI solutions are un-
able to withstand control-flow bending [12]; attacks where each
control-flow transfer follows the program’s CFG, but the program
execution trace conforms to no feasible benign execution trace.
PACStack—or ACS in general—is not susceptible to backward-edge
control-flow bending, because it precisely protects the integrity
of the authenticated return addresses while they remain on the
stack.A cannot trick PACStack to deviate from an expected return

flow by replacing aretn with a valid, but outdated aret value, be-
cause PACStack never writes aretn onto the stack. A also cannot
reliably exploit PAC collisions to replace part of the aret chain, as
each aret is masked. A cannot tamper with the instrumentation
itself by modifying the instructions in memory (Assumption A1).
By requiring coarse-grained forward-edge CFI (Assumption A2),
PACStack ensures that auth token calculations and masking are
executed atomically and cannot be used to manipulate reti , areti−1
or the mask during the function prologue and epilogue. This holds
even if the forward-edge CFI is susceptible to control-flow bending.

7.2.1 Tail-calls and signing gadgets. A recent discovery by Google
Project Zero10 shows that PA schemes can be vulnerable to an
attack whereby specific code sequences can be used as gadgets to
generate PACs for arbitrary pointers. Recall that on PAC verification
failure an aut instruction removes the PAC, but corrupts a well-
known high-order bit such that the pointer becomes invalid. If a
pac instruction adds a PAC to a pointer P with corrupt high-order
bits, it treats the high-order bits as though they were correct when
calculating the new PAC, and flips a well-known bit p of the PAC
if any high-order bit was corrupt. This means that instruction
sequences such as the one shown in Listing 9, consisting of an aut
instruction followed by a pac instruction, can be used generate a
valid PAC for a pointer even if the original pointer is not valid to
begin with. A writes an arbitrary pointer P to memory (❶) and
allows it to be verified. When verification fails, autia removes the
PAC, and corrupts the high-order bit in P , writing the resulting P∗
to the destination register (❷). The subsequent pacia will add the
correct PAC for P , then flip bit p of the PAC to indicate that the input
pointer was invalid (❸). A can now flip bit p back (❺) in order to
obtain the correct PAC for pointer P (❻).

The PA signing gadget requires finding a matching
⟨autib, pacib⟩ pair operating on pointer P in the code without any
use of P between these instructions. In PACStack each verification
is immediately followed by a return, which ensures that the
failure is detected. Tail-calls are a notable exception. Tail-calls are
function calls executed before return and optimized so that the

10https://googleprojectzero.blogspot.com/2019/02/examining-pointer-
authentication-on.html

9

Liljestrand, et al.

1 ... ; A injects P at <ptr> ❶

2 ldr Xd , <ptr > ; Xd← P
3 autia Xd , <mod > ; Xd← P ∗ ❷

4 pacia Xd , <mod > ; Xd← pacia (P , < mod >) ⊕ p ❸

5 str Xd , <ptr > ; <ptr> ← Xd
6 ... ; A sets <ptr> to <ptr> ⊕ p ❺

7 ldr Xd , <ptr > ; Xd← pacia (P , < mod >)
8 autia Xd , <mod > ; Xd← P (valid pointer) ❻

Listing 9: PA adds a PAC based on the address bits. An invalid
input pointer (❶), causes only a single bit-flip in the output
PAC (❸). This could be exploited to generate valid PACs for
arbitrary pointers.

1 A:
2 epilogue:
3 ...
4 ldr X28 , [SP] ; load invalid aret ′i−1
5 autib LR , X28 ; LR← r et ∗i ➂

6 b ; tail call B ➀

7
8 B:
9 prologue:

10 str X28 , [SP]
11 pacib LR , X28 ; LR← areti ⊕ p ➄

12 ...
13 epilogue:
14 ...
15 autib LR , X28 ; LR← r et ∗i ➃

16 ret ; ➁

Listing 10: Tail-call optimizations on 64-bit ARM remove
an unnecessary return by converting a branch with link
instruction to a non:vsp -linking branch instruction (➀).

callee directly returns to the caller of the optimized invocation of B
in Listing 10. On 64-bit ARM processors, tail-calls are implemented
using the b or br instructions that do not update LR (➀). The
tail-called function can return (➁) to the LR value set before
the tail-call (➂). PACStack limits A to modifying the previous
auth token on the stack. A could attempt to exploit the signing
gadget to trick PACStack to accept an invalid aret ′i−1 (➃), and
subsequently load it into LR after return. This is not possible as
A cannot flip the bit p of aret ′i (➄), because areti ⊕ p is: 1) kept
in LR while in B, and 2) verified against areti+1 on subsequent
function calls from B. The invalid aret ′i−1 is thus rejected by autib
(➃) before the return from B.

7.2.2 Sigreturn-oriented programming. Sigreturn-oriented pro-
gramming [9] is a exploitation technique in UNIX-like operating
systems, including Linux, that abuses the signal frame to take com-
plete control of a process’s execution state, i.e., the values of general
purpose registers, SP, program counter (PC), status flags, etc. When
the kernel delivers a signal, it suspends the process and changes
the user-space processor context such that the appropriate signal
handler is executed with the right arguments. When the signal han-
dler returns, the original user-space processor context is restored.
In a sigreturn attack A sets up a fake signal frame and initiates a

return from a signal that the kernel never delivered. Specifically, a
program returns from the handler using a sigreturn system call
that reads a signal frame (struct sigcontext in Linux) from the
process stack. A sigreturn attack is problematic for PACStack, as if
successful, it would allow A control of any EL0 register, including
CR.

A number of defense strategies against sigreturn attacks have
been proposed for the Linux kernel. Bosman and Bos [9] propose
placing keyed signal canaries in the signal frame that are validated
by the kernel before performing a sigreturn, or to keep a counter
of the number of currently executing signal handlers. However,
modern Linux versions rely solely on address space layout random-
ization (ASLR) [33] to make it difficult for the attacker to trigger
an unwarranted sigreturn. Fortunately sigreturn is never called
directly from program code (in fact the GNU C library sigreturn
simply returns an error value). Instead the system call is triggered
by signal trampoline code placed either in the kernel’s virtual dy-
namic shared object (vdso) or in the C library, both subject to ASLR.
For our chosen adversary model (Section 3) ASLR is not sufficient
as A can determine the contents of any readable memory in the
process memory space. However, PACStack itself, together with
coarse-grained CFI (Assumption A2), ensures thatA cannot divert
control flow from program code to the signal trampoline. Nonethe-
less, 64-bit ARM programs that might call system calls directly
using the svc instruction (without going through C library system
call wrappers), would not be protected against the presence of such
gadgets. We discuss a potential general solution against sigreturn
attacks that utilizes the ACS construction in Appendix B.

8 PERFORMANCE EVALUATION
At present, the only publicly available PA-enabled SoCs are the
Apple A12 and S4, neither of which support PA for 3rd party code
at the time of writing. To verify the correctness of instrumentation
we ran all benchmarks on the ARMv8-A Base Platform Fixed Virtual
Platform (FVP), based on Fast Models 11.4, which supports ARMv8.3-
A [4]. Because the FVP runs the v4.14 kernel, we have used PA RFC
patches11 modified to support all PA keys.

The FVP is not cycle-accurate and executes all instructions in
one master cycle; therefore, it cannot be used for performance
evaluation. Based on prior evaluations of the QARMA cipher [7],
which is used as the underlying cryptographic primitive in reference
implementations of PA [47], Liljestrand et al. estimate that the
PAC calculations incur an average overhead of four cycles on a
1.2GHz CPU [35]. We employ the PA-analog (Listing 11)introduced
by Liljestrand et al. to estimate the run-time overhead of PACStack.
The PA-analog consists of four eor instructions that both read and
write the registers used by the corresponding PA instruction in
order to induce similar constraints on instruction pipelining within
the CPU. To preserve compiler behavior, the PA-analog is swapped-
in during a separate pre-emit pass, i.e., after both register allocation
and instruction scheduling.

Using the PA-analog, we conducted benchmarks on a 96board
Kirin 620 HiKey (LeMaker version) with an ARMv8-A Cortex A53
Octa-core CPU (1.2GHz) / 2GB LPDDR3 SDRAM (800MHz) / 8GB
eMMC, running the Linux kernel v4.18.0 and BusyBox v1.29.2.

11https://lwn.net/Articles/752116/
10

PACStack: an Authenticated Call Stack

1 ; replace:
2 ; pacia LR , CR
3 ; with:
4 eor LR , LR, #const1
5 eor LR , LR, #const2
6 eor LR , LR, #const3
7 eor LR , LR, CR

Listing 11: PA-analog used to simulate overhead on non-
PA hardware, based on an estimated overhead of 4
cycles. Three exclusive-or inputs are constants, whereas
the last instruction uses both inputs to ensure instruction
pipelining must get both values.

We have performed benchmarks using both nbench-byte-2.2.312

program and the SPEC CPU 2017 benchmark package13.

8.1 nbench-byte-2.2.3
The nbench program includes 10 separate benchmarks and is de-
signed to measure CPU and memory performance. The benchmarks
employ dynamic workload adjustment to ensure that a test run
takes at least a certain amount of time. In order to determine the
relative overhead introduced by PACStack, we took the same ap-
proach as prior work [10, 35] and modified nbench to perform a
pre-determined number of iterations of each benchmark and mea-
sured the execution time of each separately. All binaries used in the
performance evaluation were produced by our PACStack-enabled
compiler. We disabled all optimizations when compiling benchmark
binaries (-O0 flag for Clang and LLVM, and -O=0 for llc). We evalu-
ated the performance of nbench in three configurations: i) PACStack
disabled, to determine the baseline execution time; ii) PACStack
enabled, without PAC masking; and iii) PACStack enabled, with
PAC masking. We repeated each benchmark 10 times and measured
the user time using the time utility for each benchmark run. The re-
sults are shown in Figure 6, and indicate an overhead of 0.5% when
using PAC masking, and an overhead of <0.3% without (geometric
mean of all benchmarks [52]).

8.2 SPEC CPU 2017
In contrast to nbench-byte-2.2.3, SPEC CPU 2017 is an industry-
standard benchmarking suite that consists of larger units of work
based on real-world applications. Due to resource constraints it
was not feasible to install both the PACStack compiler and the
SPEC CPU suite on the FVP or HiKey board. Instead we compiled
the benchmarks with the SPEC runcpu utility configured to use
WLLVM14 as the compiler. WLLVM produces binaries containing
the LLVM Intermediate Representation (IR), which we extracted
and instrumented using PACStack and the PA-analog.

For comparison, we also measured the run-time overhead of
ShadowCallStack [15], an instrumentation pass added in LLVM/-
Clang 7.0. ShadowCallStack protects programs against return ad-
dress overwrites by saving a function’s return address in the func-
tion prolog to a separately allocated shadow stack and checking

12http://www.math.utah.edu/~mayer/linux/bmark.html
13https://www.spec.org/cpu2017
14https://github.com/travitch/whole-program-llvm

-0.50% 0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

Numeric sort

String sort

Bitfield

FP emulation

Fourier

Assignment

IDEA

Huffman

Neural net

LU decomposition

PACStack without masking PACStack with masking

Figure 6: Relative performance overhead of the individual
nbench-byte-2.2.3 benchmarks. The error bars indicate the
standard error for n = 10 test runs per benchmark. The geo-
metric mean of all benchmarks is 0.5%.

the return address on the stack against the shadow stack in the
function epilog. On 64-bit ARM the instrumentation makes use of
X18 register to reference the shadow stack. Currently the runtime
support for the ShadowCallStack instrumentation is only available
in Android’s Bionic C library. In addition, ShadowCallStack is only
compatible with uninstrumented libraries which reserve the X18
register, i.e., binaries built for a platform whose ABI reserves x18,
(e.g., Android, Darwin, Fuchsia and Windows) or are compiled with
the -ffixed-x18 flag. To be able to perform a fair comparison
against PACStack instrumented SPEC using the GNU C library
(glibc) we ported ShadowCallStack support to glibcversion 2.23
and compiled versions of our modified glibc and libgcc 6.4.1,
the GCC low-level runtime library with the -ffixed-x18 flag. Our
changes to glibc were based on revision da772e215 of the Bionic
C library. For PACStack measurements we used a prebuilt version
of glibc 2.23 and libgcc 6.4.1 distributed by Linaro16.

All benchmarks were compiled with the -O0 flag to disable opti-
mizations. The benchmark execution command and input files were
determined using the SPEC specinvoke utility and then timed on
the HiKey board using time.

Our measurements include all C-language SPECrate benchmarks,
with the exception of two benchmarks that were incompatible
with the WLLVM build environment that we used. For each bench-
mark, we compared the performance of the baseline (with PACStack
and ShadowCallStack disabled) with three different configurations:
i) PACStack without masking, ii) PACStack with masking, and
iii) ShadowCallStack. Results are shown in Figure 7 and are re-
ported as the mean overhead (w.r.t the baseline) and corresponding
standard error. The SPEC CPU 2017 benchmark suite is resource
intensive [42]; a single iteration of all SPEC benchmarks in Figure 7
took 13 times longer than an iteration of all nbench benchmarks.
We therefore performed fewer measurements for SPEC than for
nbench. Consequently, though the SPEC benchmarks are more
representative of real-world workloads, they are more sensitive to

15https://android.googlesource.com/platform/bionic/+/
da772e2113fad40575eea4ebbb522509be7dfe4f%5E%21/
16https://releases.linaro.org/components/toolchain/binaries/6.4-2018.05/

11

Liljestrand, et al.

-0,50% 0,00% 0,50% 1,00% 1,50% 2,00% 2,50% 3,00%

505.mcf_r

519.lbm_r

525.x264_r

538.imagick_r

544.nab_r

557.xz_r

PACStack without masking PACStack with masking ShadowCallStack

n=24

n=20

n=16

n=20

n=20

n=16

Figure 7: Relative performance overhead for SPEC CPU 2017
benchmarks; error bars show the standard error for n mea-
surements. n = 20 for the ShadowCallStack configuration.

outliers than those in Figure 6. The results show PACStack incurs an
overhead of 0.9% with masking, and 0.4% without masking (geomet-
ric mean of all benchmarks). PACStack without masking performs
marginally better than ShadowCallStack, which incurs an over-
head of 0.5% (geometric mean of all benchmarks). The performance
overhead of PACStack is proportional to the frequency of function
calls; benchmarks with few function calls are affected less by the
instrumentation compared to benchmarks with frequent function
calls. For instance, the 519.lbm_r benchmark performs fluid dy-
namics and consists of large nested loops with few function calls.
Consequently we see little effect on performance in 519.lbm_r;
in fact, our measurements show a small improvement in perfor-
mance, which is likely caused by CPU pipeline optimizations that
happen to be advantageous. We observe the same behavior for
ShadowCallStack.

Based on these results, we expect the overhead for both PAC-
Stack configurations to be a) comparable to ShadowCallStack, and
b) negligible on ARMv8.3-A PA-capable hardware.

9 RELATED WORK
Control-flow hijacking attacks were discovered and popularized
more than two decades ago [49]. The majority of CFI solutions
proposed since then are stateless: they validate each control-flow
transfer in isolation without distinguishing among different paths
in the control-flow graph (CFG). Fully-precise static CFI [12] is in
theory the most restrictive stateless policy that is possible without
breaking the intended functionality of the protected program. In
fully-precise static CFI, and by extension any stateless policy,the
best possible policy for return instructions is to allow returns within
a function F to target any instruction that follows a call to F . All
stateless CFI schemes, including fully-precise static CFI, are vulner-
able to control-flow bending [12].

Stateful CFI can express policies that take previous control-
flow transfers into account. HAFIX [19] is a hardware-assisted CFI
scheme that confines function returns to active call sites. Context-
sensitive CFI [20, 27, 53] further ensures that each control-flow
transfer taken by the program is consistent with a non-malicious
trace. This leads to a more precise policy compared to stateless
CFI, but context-sensitive CFI enforcement has been dismissed as
impractical for real-world adoption [1]. Hardware-assisted branch
recording features available in modern 64-bit Intel microprocessors

show promise in enabling context-sensitive CFI enforcement on
commodity hardware, but suffer from i) limited branch history used
to make CFI decisions, ii) over-approximation of the program CFG,
iii) reliance on complex run-time monitoring. HAFIX, on the other
hand, requires changes to the underlying processor architecture.

Stateless forward-edge CFI enforcement is often combined with
a shadow stack [1, 14–18, 22, 23, 28, 39, 40, 51] to enforce the in-
tegrity of return addresses stored on the call stack. In fact, the
results by Carlini et al. [12] show that a shadow stack (or equiva-
lent mechanism) is essential for the security of CFI. The shadow
stack maintains a copy of each return address in a separate region
of memory. Each return instruction is then instrumented to validate
that the return addresses on the call and shadow stack match. This
ensures that each return is restricted only to its corresponding call
site.

Although shadow stacks provide precise protection, traditional
shadow stacks incur significant performance overhead and lead to
false positives for programming constructs that cause mismatches
between calls and returns (C++ exceptions with stack unwinding,
setjmp/ longjmp). Recent shadow designs demonstrate that per-
formance can be increased by either leveraging a parallel shadow
stack [17], or using a dedicated register for shadow stack address-
ing [11]. However, in these schemes the shadow stack still resides
in the same address space as the target application, and can be
compromised if the shadow stack location is known to A. For
traditional shadow stacks, a typical solution for dealing with mis-
matches between calls and returns is to pop return addresses off
the shadow stack until a match is found, or the shadow stack is
empty (e.g., binary RAD [14]). This not only increases the complex-
ity and run-time of the shadow stack instrumentation placed in
the function epilogue, but also sacrifices precision, e.g., it allowsA
to redirect longjmp to any previously active call site. This can be
avoided by storing and validating both the return address and stack
pointer [16, 41, 51]. So far, only hardware-assisted shadow stacks
promise to achieve negligible overhead without security trade-offs
(e.g., Intel CET[28]).

Park et al. [44] present a microarchitectural shadow stack imple-
menation that utilizes the branch predictor return address stack, a
common hardware feature found in modern speculative superscalar
processor designs. The return address stack is typically a circular
buffer, so to avoid the loss of stored return addresses when the maxi-
mum capacity is reached, Park et al. modify the return address stack
to spill a portion of it’s content to backup storage in main memory.
They use a Merkle tree caching scheme to efficiently authenticate
the backup storage before it is read back to the return address stack.
The latency of spill / fill operations on backup memory is effec-
tively offset by the 100% hit rate for branch prediction thanks to
the ability to retain return addresses that exceed the return address
stack capacity.

The idea of using of MACs to protect the return address at run-
time was introduced in Cryptographic CFI (CCFI) [37] which uses
MACs to protect return addresses and other control-flow data (e.g.,
function pointers and C++ vtable pointers). CCFI’s return address
protection is similar to PA-based return address signing [47]; both
bind the return address to the address of the function’s stack frame
and thus provide only coarse-grained resistance against pointer
reuse attacks [35].

12

PACStack: an Authenticated Call Stack

Program Counter Encoding [34, 43, 46] protects return addresses
on the stack by encoding them with either a register-resident secret
key [34], the SP [46], or the address at which the return address
itself is stored (a.k.a. the self-address) [43]. It’s efficient, but relying
on a userspace-resident secret key makes such encoding schemes
susceptible to buffer over-reads, and SP or self-address encoding
suffer the same drawbacks as -msign-return-address [35, 47]
(Section 2.2.1).

Other prominent defenses against control-flow attacks include
fine-grained code randomization [33], and code-pointer integrity
(CPI) [31]. Code randomization makes it more difficult forA to find
suitable gadgets to exploit in their attacks, but is not effective if the
memory layout of the program becomes known. CPI protects code
pointers by storing them in a separate safe stack. The safe stack
requires similar integrity guarantees as shadows stacks to remain
effective [21].

PACStack targets the ARM architecture, which traditionally has
received less attention compared to the x86 family of computer ar-
chitectures in terms of CFI research. MoCFI [18] is a software-based
CFI approach specifically targeting ARM application processors
used in smartphones. It uses a combination of a shadow stack, static
analysis and run-time heuristics to determine the set of valid targets
for control-flow transfers, but suffers from the same drawbacks that
plague traditional shadow stack schemes. CFI CaRE [40] is a CFI
solution targeting small, embedded ARM-based microcontrollers
(MCUs). It uses the ability to perform hardware-enforced isolated
execution on ARMv8-M MCUs to isolate the shadow stack to a
secure processor state. The ARMv8-M [5] architecture enforces
that calls to secure functions must target secure gate instructions
placed at the beginning of such functions. The ARMv8.5-A archi-
tecture introduces similar branch target indicators (BTI) [3] to also
ARM application processors. BTI constitutes one way to meet the
PACStack pre-requisite of coarse-grained CFI for indirect branch
instructions, e.g., calls via function pointers.

10 DISCUSSION
10.1 Generalizing ACS to other data structures
ACS builds on the idea of chaining cryptographic authentication
codes. This simple, yet powerful, construct is similar to hash chains,
which have been used before as means of password protection
(Lamport signatures [32]), digital signatures (Merkle trees [38]),
and have seen use in technologies such as blockchain [54] and
trusted hardware access control authorization policies [6].

While the focus of this work is on applying this idea to protect
the integrity of return addresses in the program call stack, the
same approach can be generalized to other data structures and
applications. For example, the call-stack protection could easily
be extended to cover the frame pointer, or other data stored in a
function’s stack frame, and protect such data from unauthorized
modification.

In addition to instrumentation that can protect the call stack,
an ACS-like authenticated stack, or other data structure such as
a Merkle-tree [38] can be implemented as reusable library, which
would allow application developers to protect the integrity of criti-
cal data structures from manipulation as a result of software [13, 26],
or hardware attacks [29].

An example of such a use case is data structures in operating
system kernels. For instance, the Linux kernel source code features
a generic double linked list implementation, which doubles as a
queue and stack, depending on where in the kernel it is used17.
Kernel data structures are critical to the system security. Many
of the vulnerabilities found in the kernel allow limited access to
kernel data. Malicious modification of kernel data can lead to a
wide range of effects, including privilege escalation and process
hiding [8]. Applying ACS-like protection to critical kernel stacks
can protect such structures from: i) malicious modification byA in
an effort to compromise kernel data integrity ii) accidental misuse
by programmers, e.g., operating on a stack as a queue and vice
versa (a side-effect of reuse of generic list implementations).

10.2 Support for software exceptions
The setjmp / longjmp interface has traditionally been used to pro-
vide exception-like functionality in C. However, modern coding
standards for C and C++ that aim to facilitate code safety, secu-
rity, and reliability consider them harmful and forbid their use, e.g.,
MISRA C:2004 [25, Rule 20.7] and JSF AV C++ [36, Rule 20]. Recall
from Section 5.5, that calling longjmp with an expired jmp_buf
is is undefined behavior. For PACStack, this means that although
the aretb in jmp_buf to the corresponding SP and authi , it cannot
guarantee their freshness. A can modify jmp_buf to contain the
previously used aretb and SPb , but must also modify the stack-
frame at SPb , such that it contains the prior areti . This allows a
control-flow transfer to a previously valid setjmp return site and
SP value. To prevent reuse of expired jmp_buf buffers, longjmp
can be rewound step-by-step, i.e., conceptually performing returns
until the correct stack-frame is reached.

We plan to extend PACStack support to LLVM
libunwind18libunwind performs frame-by-frame unwind-
ing of the call stack. By validating the ACS on each stack frame
unwinding, PACStack can ensure that a fresh and valid state is
reached.

Because C++ exceptions also cause irregular stack unwinding
they pose a similar challenge. However, C++ already performs more
fine-grained stack unwinding to correctly destroy objects in un-
wound stack frames. The LLVM libcxxabi library will, depending
on configuration, use libunwind for this purpose. With PACStack
support in libunwind, we will be able to secure both setjmp /
longjmp and support C++ exception handling.

10.3 Interoperability with unprotected code
Interoperability with unprotected (uninstrumented) code is an
important deployment consideration. On one hand, a PACStack-
protected application may need to interoperate with unprotected
shared libraries. On the other, an unprotected app may need to
interoperate with PACStack-protected shared libraries. The latter
scenario is relevant for deployment in mobile operating systems
such as Android, where multiple stakeholders provide application
binaries to consumer devices. The deployment of PACStack, or
any other run-time protection mechanism, is likely to be driven

17https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/
linux/list.h?h=v5.0
18https://github.com/llvm/llvm-project/tree/master/libunwind

13

Liljestrand, et al.

by OEMs that enable specific protection schemes for the operat-
ing system and system applications. However, OEMs are not in
control of native code deployed as part of applications distributed
through standard application marketplaces. It should be possible
for one version of the shared libraries shipped with the operating
system to remain interoperable with both PACStack-protected, and
unprotected apps.

In Section 6.1 we explain how the use of callee-saved registers
allows PACStack to remain interoperable with unprotected code.
Recall that because CR is a callee-saved register it will be restored
upon return. However, PACStack cannot guarantee that CR remains
unmodified during the execution of the unprotected code that could
temporarily store its value on the stack. To achieve the security
guarantees describes in Section 7, PACStack instrumentation must
be applied to both the application and any shared libraries. How-
ever, partial protection, e.g. PACStack-protected shared libraries
can significantly raise the bar for the attacker, as calls into protected
functions can still benefit from return address authentication. Com-
mon shared libraries like libc are a popular source for gadgets
for run-time attacks because of their size and availability. Because
functions in a PACStack-protected library validate the return ad-
dress in returns from library functions, they effectively remove a
potentially large set of reusable gadgets from A’s disposal.

11 CONCLUSION
We showed how a general-purpose hardware security mechanism
(ARM PA) can provide guarantees on-par with hardware-assisted
shadow stacks, without requiring additional hardware support or
compromising security. Other general-purpose primitives like mem-
ory tagging and branch target indicators are being rolled out. Cre-
ative uses of such primitives hold the promise of significantly im-
proving software protection.

ACKNOWLEDGMENTS
This work was supported in part by the Academy of Finland under
grant nr. 309994 (SELIoT), and the Intel Collaborative Research
Institute for Collaborative Autonomous & Resilient Systems (ICRI-
CARS).

REFERENCES
[1] Martín Abadi et al. 2009. Control-flow Integrity Principles, Implementations, and

Applications. ACM Trans. Inf. Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.
[2] ARM Ltd. 2017. ARMv8 Architecture Reference Manual, for ARMv8-A archi-

tecture profile (ARM DDI 0487C.a). https://static.docs.arm.com/ddi0487/ca/
DDI0487C_a_armv8_arm.pdf.

[3] ARM Ltd. 2018. Arm A-Profile Architecture Developments 2018: Armv8.5-
A. https://community.arm.com/developer/ip-products/processors/b/processors-
ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a.

[4] ARM Ltd. 2018. Fast Models, Version 11.4, Fixed Virtual Platforms (FVP) Reference
Guide. https://static.docs.arm.com/100966/1104/fast_models_fvp_rg_100966_
1104_00_en.pdf.

[5] ARM Ltd. 2019. Armv8-M Architecture Reference Manual (ARM DDI 0553B.g).
https://static.docs.arm.com/ddi0553/bg/DDI0553B_g_armv8m_arm.pdf.

[6] Will Arthur and David Challener. 2015. A Practical Guide to TPM 2.0: Using the
Trusted Platform Module in the New Age of Security (1st ed.). Apress, Berkely, CA,
USA.

[7] Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions
With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency
S-Boxes. IACR Trans. Symmetric Cryptol. 2017, 1 (2017), 4–44.

[8] Ahmed M. Azab et al. 2014. Hypervision Across Worlds: Real-time Kernel Pro-
tection from the ARM TrustZone Secure World. In Proc. ACM CCS ’14. 90–102.

[9] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable
Shellcode. In Proc. IEEE S&P ’14. 243–258.

[10] Ferdinand Brasser et al. 2017. DR.SGX: Hardening SGX Enclaves against Cache
Attacks with Data Location Randomization. https://arxiv.org/abs/1709.09917.

[11] Nathan Burow et al. 2019. SoK: Shining Light on Shadow Stacks.
arXiv:1811.03165v2 [cs.CR]. https://arxiv.org/abs/1811.03165v2

[12] Nicolas Carlini et al. 2015. Control-flow Bending: On the Effectiveness of Control-
flow Integrity. In Proc. USENIX Security ’15. 161–176.

[13] Shuo Chen et al. 2005. Non-control-data Attacks Are Realistic Threats. In Proc.
USENIX Security ’05. 177–191.

[14] Tzi-Cker Chiueh and Fu-Hau Hsu. 2001. RAD: a compile-time solution to buffer
overflow attacks. In Proc. 21st International Conference on Distributed Computing
Systems. 409–417.

[15] Clang 7.0 Documentation. 2018. ShadowCallStack. https://releases.llvm.org/7.0.
0/tools/clang/docs/ShadowCallStack.html.

[16] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. 2005. Using DISE to Protect
Return Addresses from Attack. ARM SIGARCH Comput. Archit. News 33, 1 (2005),
65–72.

[17] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance
Cost of Shadow Stacks and Stack Canaries. In Proc.ACM ASIA CCS ’15. 555–566.

[18] Lucas Davi et al. 2012. MoCFI: A framework to mitigate control-flow attacks on
smartphones. In Proc. NDSS ’12.

[19] Lucas Davi et al. 2015. HAFIX: Hardware-assisted Flow Integrity Extension. In
Proc. ACM/EDAC/IEEE DAC ’15. 74:1–74:6.

[20] Ren Ding et al. 2017. Efficient Protection of Path-Sensitive Control Security. In
Proc. USENIX Security ’17. 131–148.

[21] I. Evans et al. 2015. Missing the Point(er): On the Effectiveness of Code Pointer
Integrity. In Proc. IEEE S&P ’15. 781–796.

[22] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. 2002. Detecting Manipulated
Remote Call Streams. In Proc. USENIX Security ’02. 61–79.

[23] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. 2004. Efficient context-
sensitive intrusion detection. In Proc. NDSS ’04.

[24] William H. Hawkins, Jason D. Hiser, and Jack W. Davidson. 2016. Dynamic
Canary Randomization for Improved Software Security. In Proc. ACM CISRC ’16.
9:1–9:7.

[25] HORIBA MIRA Ltd. 2004. Guidelines for the Use of the C Language in Critical
Systems. http://www.misra.org.uk/

[26] Hong Hu et al. 2016. Data-Oriented Programming: On the Expressiveness of
Non-control Data Attacks. In Proc. IEEE S&P ’16. 969–986.

[27] Hong Hu et al. 2018. Enforcing Unique Code Target Property for Control-Flow
Integrity. In Proc. ACM CCS ’15. 1470–1486.

[28] Intel. 2016. Control-flow Enforcement Technology Preview. https:
//software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf.

[29] Yoongu Kim et al. 2014. Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors. In Proc. IEEE ISCA ’14.
361–372.

[30] Tim Kornau. 2009. Return Oriented Programming for the ARM Architecture. Ph.D.
Dissertation. Ruhr-Universität Bochum.

[31] Volodymyr Kuznetsov et al. 2014. Code-pointer Integrity. In Proc. USENIX OSDI
’14. 147–163.

[32] Leslie Lamport. 1981. Password Authentication with Insecure Communication.
Commun. ACM 24, 11 (1981), 770–772.

[33] Per Larsen et al. 2014. SoK: Automated Software Diversity. In Proc. IEEE S&P ’14.
276–291.

[34] Gyungho Lee and Akhilesh Tyagi. 2000. Encoded Program Counter: Self-
Protection from Buffer Overflow Attacks.. In Proc. CSREA ICIC ’00. 387–394.

[35] Hans Liljestrand et al. 2019. PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In Proc. USENIX Security ’19.

[36] Lockheed Martin Corporation. 2005. Joint Strike Fighter Air Vehicle C++ Coding
Standards (Revision C). http://www.jsf.mil/downloads/down_documentation.
htm

[37] Ali Jose Mashtizadeh et al. 2015. CCFI: Cryptographically Enforced Control Flow
Integrity. In Proc. ACM CCS ’15. 941–951.

[38] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In CRYPTO ’87. Springer-Verlag, 369–378.

[39] Danny Nebenzahl, Mooly Sagiv, and Avishai Wool. 2006. Install-Time Vaccination
of Windows Executables to Defend Against Stack Smashing Attacks. IEEE Trans.
Dependable Secur. Comput. 3, 1 (2006), 78–90.

[40] Thomas Nyman et al. 2017. CFI CaRE: Hardware-Supported Call and Return
Enforcement for Commercial Microcontrollers. In Research in Attacks, Intrusions,
and Defenses. 259–284.

[41] H. Ozdoganoglu et al. 2006. SmashGuard: A Hardware Solution to Prevent
Security Attacks on the Function Return Address. IEEE Trans. Comput. 55, 10
(2006), 1271–1285.

[42] R. Panda et al. 2018. Wait of a Decade: Did SPEC CPU 2017 Broaden the Perfor-
mance Horizon?. In Proc. IEEE HPCA ’18. 271–282.

14

PACStack: an Authenticated Call Stack

[43] Seho Park, Jongmin Lee, Yongsuk Lee, and Gyungho Lee. 2015. Control Flow
Hardening with Program Counter Encoding for ARM® Processor Architecture.
In Proceedings of the International Conference on Communications and Computers
(CC 2019) (Recent Advances in Electrical Engineering). 32–38.

[44] Yong-Joon Park and Gyungho Lee. 2004. Repairing Return Address Stack for
Buffer Overflow Protection. In Proc. ’04. 335–342.

[45] Theofilos Petsios, Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D.
Keromytis. 2015. DynaGuard: Armoring Canary-based Protections Against Brute-
force Attacks. In Proc. ACM ACSAC ’15. 351–360.

[46] Changwoo Pyo and Gyungho Lee. 2002. Encoding Function Pointers and Memory
Arrangement Checking Against Buffer Overflow Attack. In Proc. ICICS ’02. 25–36.

[47] Qualcomm. 2017. Pointer Authentication on ARMv8.3. https://www.qualcomm.
com/media/documents/files/whitepaper-pointer-authentication-on-armv8-
3.pdf.

[48] Nigel P Smart. 2016. Cryptography Made Simple. Springer.
[49] Solar Designer. 1997. lpr LIBC RETURN exploit. http://insecure.org/sploits/

linux.libc.return.lpr.sploit.html
[50] László Szekeres et al. 2013. SoK: Eternal War in Memory. In Proc. IEEE S&P ’13.

48–62.
[51] Caroline Tice et al. 2014. Enforcing Forward-edge Control-flow Integrity in GCC

& LLVM. In Proc. USENIX Security ’14. 941–955.
[52] Erik van der Kouwe et al. 2018. Benchmarking Crimes: An Emerging Threat in

Systems Security. https://arxiv.org/abs/1801.02381.
[53] Victor van der Veen et al. 2015. Practical Context-Sensitive CFI. In Proc. ACM

CCS ’15. 927–940.
[54] Dylan Yaga et al. 2018. Blockchain Technology Overview. Technical Report

NIST.IR.8202. National Institute of Standards and Technology.

A SECURITY PROOFS
In Section 7.1, we gave an informal analysis of the security of ACS;
here we give a more detailed proof of security, and in particular
prove that authentication token masking prevents A from obtain-
ing exploitable authentication token collisions.

The argument proceeds as follows: we suppose that A, after
obtaining q authentication tokens, can find a pair of inputs (x,y)
and (x,y′) whose authentication tokens HK(·, ·) collide. This can
be used to construct a distinguisher of the masks HK(0, ·) from a
random string. The structure of the authentication tags is such that
this further reduces to a semantic security game for one-time pad
encryption of the masks. Then, we show that any violation of the
integrity of an ACS-protected call stack also yields values whose
authentication tokens collide as described above, allowing us to
bound the probability of an integrity violation.

We summarize our notation in Table 2.

Theorem A.1 (PAC-masking prevents collision-finding).
Suppose that after q queries, an adversary A can distinguish
HK(·, ·) from a random oracle with advantage no greater than
AdvAPAC-Distinguish(1λ,H ,q), as given in Figure 9. Then, assuming a
key-length of λ for HK(·, ·), and given access to q masked authentica-
tion tokens, A can identify a pair of inputs (x̂, ŷ) and (x̂, ŷ′) whose
corresponding unmasked authentication tokens collide with advantage
at most 2AdvAPAC-Distinguish(1λ,H ,q).

Proof. We begin with a collision-game GAPAC-Collision(1λ,H ,q),
shown in Figure 8 in which the adversary is given oracle access
to the authentication token generator and then asked to provide
values x,y,y′ such that HK(x,y) = HK(x,y′).

An adversary that selects (x,y,y′) at random from {0, 1}VA_SIZE×
{0, 1}VA_SIZE+b × {0, 1}VA_SIZE+b , such that y , y′, will win with
probability 2−b ; A’s advantage is therefore

AdvAPAC-Collision(1λ,H ,q) = P
[
GAPAC-Collision(1λ,H ,q) = 1

]
− 2−b .

Games
GACS
(Figure 13)

Security game for ACS integrity.

GPAC-Collision
(Figure 8)

Security game for the identification of col-
liding authentication tokens.

GPAC-Distinguish
(Figure 9)

Security game for the distinguishability of
HK(·, ·) from a random oracle.

G1,G2,G3
(Figure 11)

Semantic security games for the mask
HK(0, ·).

Adversary interfaces
GACS Aoracle-request Get path through the call-

graph for which A wants
the final authenticated re-
turn address pushed to the
stack.

Aoracle-response Return a previously-
requested authenticated
return address.

AACS-Violation Return to the challenger
authenticated return val-
ues that can be used to vi-
olate call stack integrity.

GPAC-Collision Aoracle-request Get a value for which A
wants a masked authenti-
cation token.

Aoracle-response Return a previously-
requested masked authen-
tication token.

Agen-collision Return to the challenger
two authenticated return
values with colliding au-
thentication tokens.

GPAC-Distinguish Aoracle-request Get a value for which A
wants an authentication
tag.

Aoracle-response Return a previously-
requested authentication
token.

Adistinguish Return to the challenger
a single bit identifying
whether the given tokens
were from a random oracle
or HK(·, ·).

G1,G2 Bdistinguish Identify the authentication
token function used to gen-
erate masked authentica-
tion tokens.

G3 Bdistinguish’ As for G1,G2, but with
the inputs represented as
strings rather than func-
tions.

Table 2: Notation used in Appendix A.

15

Liljestrand, et al.

GAPAC-Collision(1λ,H ,q)
K

$← {0, 1}λ
// Give A q masked authentication tokens

// of their choice.

for i ∈ {1, . . . , q } do
(x , y) ← Aoracle-request()
Aoracle-response (HK(x , y) ⊕ HK(0, y))

endfor

// A is challenged to provide inputs whose authentication tokens collide.

(x̂ , ŷ, ŷ′) ← Agen-collision()
if ŷ , ŷ′ ∧ HK(x̂ , ŷ) = HK(x̂ , ŷ′) then

return 1
else

return 0
endif

Figure 8: Security game for finding colliding PACs given
masked authentication tokens.

GAPAC-Distinguish(1λ,H ,q)
K

$← {0, 1}λ

// B is given values of their choice from either

// HK(·, ·) or a random oracle RO (x , y)

S0(x , y) def= RO (x , y)
S1(x , y) def= HK(x , y)
c

$← {0, 1}
for i ∈ {1, . . . , q } do
(x , y) ← Aoracle-request()
Aoracle-response (Sc (x , y))

endfor

// A is challenged to determine whether it received

// values from HK(·, ·) or the random oracle.

ĉ ← Adistinguish()
if c , ĉ then

return 1
else

return 0
endif

Figure 9: Security game in which A attempts to distinguish
HK(·, ·) from a random oracle.

We will bound this advantage by reduction to a semantic security
game for the masks. We consider the following games, shown in
Figure 11, and described in Figure 10.

The first hop, from G1 to G2, is based on indistinguisha-
bility and relaxation: we suppose that HK(·, ·) can be distin-
guished from a random oracle with probability no more than

GB1 (1λ,H ,q): B obtains masked authentication to-
kens HK(x,y) ⊕ HK(0,y) for up to q pairs (x,y)
of B’s choice, and must then distinguish the
masks HK(0, ·) from a random oracle.

GB2 (1λ,H ,q):H K
(·,
·)
→

ra
nd

om
or

ac
le

This is the same as the previous game,
except that HK(·, ·) is replaced by a random or-
acle and B is not limited in their number of
queries. B must now distinguish between two
random oracles, one of which is used in com-
puting the authentication tokens, and one of
which is independent of the authentication to-
kens.

GB3 (1λ,H ,q):

Re
fo

rm
ul

at
io

n

This is the semantic security game for
repeated one-time-pad encryptions of a ran-
dom string.

Figure 10: The game-hops used in Figure 11.
1
2 + AdvAPAC-Distinguish(1λ,H ,q), and that the adversary is not lim-
ited in the number of queries that can be made to the masked
authentication token oracle. Then,

P[GB1 (1λ,H ,q) = 1] ≤ P[GA2 (1λ,H ,q) = 1]
+ AdvAPAC-Distinguish(1λ,H ,q).

The second hop, from G2 to G3, is a mere reformulation of G2 such
that random oracles are represented as strings, and that rather than
allowing B to request arbitrarily many authentication tokens from
the challenger, we instead give B direct access to the oracle, as
represented by the sequence of strings T1...2VA_SIZE .

The third game is a semantic security game for the one-time
pad, where A is given 2VA_SIZE encryptions of S1 and then asked
to distinguish between S1 and a random string. The perfect secrecy
of the one-time pad means that P[GB1 (1λ) = 1] = 1

2 and so

P[GB1 (1λ) = 1] ≤ 1
2 + AdvAPAC-Distinguish(1λ,H ,q). (2)

Finally, we provide a reduction from GAPAC-Collision(1λ,H ,q) to
G1
B(1λ). Suppose A can win GAPAC-Collision(1λ,H ,q) with advan-

tage AdvAPAC-Collision(1λ,H ,q). Then, we define an adversary AA
for G1

B(1λ), shown in Figure 12.
This adversary wins G1

B(1λ) with probability at least 1
2 +

1
2 AdvAPAC-Collision(1λ,H ,q), and so by (2)

AdvAPAC-Collision(1λ,H ,q) ≤ 2AdvAPAC-Distinguish(1λ,H ,q).
If the MAC HK(·, ·) is a pseudo-random function family with respect
to K , then AdvAPAC-Distinguish(1λ,H ,q) is negligible, and thus so is
AdvAPAC-Collision(1λ,H ,q). □

With a bound on A’s probability of successfully obtaining a
PAC collision, we may now obtain a bound on their probability of
violating the integrity of an ACS-protected call stack.

16

PACStack: an Authenticated Call Stack

GB1 (1λ,H ,q)

K
$← {0, 1}λ

S0(y) def= RO (y)
S1(y) def= HK(0, y)
T (x , y), x , 0, first q queries def= HK(x , y) ⊕ HK(0, y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c
$← {0, 1}

ĉ ← Bdistinguish (T , Sc , S1−c)
if c = ĉ then

return 1
else

return 0
endif

GB2 (1λ,H ,q)

S0(y) def= RO0(y)
S1(y) def= RO1(0, y)
T (x , y), x , 0 def

= RO1(x , y) ⊕ RO1(0, y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c
$← {0, 1}

ĉ ← Bdistinguish (T , Sc , S1−c)
if c = ĉ then

return 1
else

return 0
endif

GB3 (1λ,H ,q)

P1. . .2VA_SIZE ← {0, . . . , 2b − 1}2b+VA_SIZE

S0
$← {0, . . . , 2b − 1}2b+VA_SIZE

S1
$← {0, . . . , 2b − 1}2b+VA_SIZE

T1. . .2VA_SIZE ← P1. . .2VA_SIZE ⊕ S1

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T··· .

c
$← {0, 1}

ĉ ← Bdistinguish’ (T , Sc , S1−c)
if c = ĉ then

return 1
else

return 0
endif

HK(·, ·) → random oracle
random oracle→ random string

Figure 11: Security games used in Theorem A.1.

BAoracle-request()
return Aoracle-request()

BAoracle-response(x)
Aoracle-response(x)

BAdistinguish(T , S, S ′)
x , y, y′ ← Agen-collision(T)
if S (y) ⊕ S (y′) = T (x , y) ⊕ T (x , y′) then

return 1
else

return 0
endif

Figure 12: An adversary BA for G1 used in our black-box
reduction of GPAC-Collision to G1. Not shown is the variant
BAdistinguish’(T , S, S ′) that is identical to BAdistinguish(T , S, S ′) ex-
cept that T , S , and S ′ are given in the form of strings.

17

Liljestrand, et al.

Theorem A.2 (Security of ACS). Consider a program whose
call stack is protected by ACS, which has a call-graph C and b-bit
masked authentication tokens TK(x,y) = HK(x,y) ⊕ HK(0,y). Then, an
adversary with arbitrary control over memory can violate backward-
edge control-flow integrity with probability

P
[
GAACS(1λ,H ,C,q)

]
≤ P

[
GAPAC-Collision(1λ,H ,q)

]
≤ 2−b + 2AdvAPAC-Distinguish(1λ,H ,q)

Proof. We begin with a security game for ACS, shown in Fig-
ure 13.

Our goal is to provide a black-box reduction from
GAACS(1λ,H ,C,q) to GAPAC-Collision(1λ,H ,q).

From line 24 of Figure 13, winning GAACS implies that A has
obtained colliding authentication tokens, and therefore A can win
GAPAC-Collision with probability at least P[GAACS]. Substituting the
bound from Theorem A.1, we obtain the bound given. □

B MITIGATION OF SIGRETURN ATTACKS
A solution for precluding sigreturn attacks against PACStack would
be to include the signal return value to the PACStack chain via the
PC value stored on the signal frame:

asiдreti =

{
pacib(PC = siдreti ,asiдreti−1) if i > 0
pacib(PC = siдreti , CR = aretn) if i = 0

Upon signal delivery, the kernel stores a copy of asiдretn securely
in kernel space as a reference value. If the process was already
executing a signal handler, and thus the kernel already has a refer-
ence copy of asiдretn−1 on record, it stores asiдretn−1 in the new
signal frame and overwrites the secure copy with asiдretn . On
sigreturn the kernel attempts to validate the PC and CR values in
the signal frame as though the reference value was asiдret0. If suc-
cessful it performs the signal return to siдretn and restores aretn
to CR. Otherwise the kernel assumes a return to a nested signal
handler, and retrieves siдret ′n and asiдret ′n−1 from the signal frame,
validates them by calculating asiдret ′n = pacib(siдret ′n,asiдret ′n−1)
and comparing the result against the stored asiдretn reference
value. If successful the kernel replaces asiдretn with asiдretn−1 in
the secure kernel store and performs the signal return to siдretn . If
the validation fails the kernel terminates the process. This prevents
A from 1) overwriting CR, and 2) forging the PC values in signal
frames. For general protection against sigreturn attacks corrupting
any register stored in the signal frame, all register values could be
included in the asiдret calculation using the pacga instruction and
validated at the time of sigreturn.

GAACS(1λ,H ,C,q)
1 : K

$← {0, 1}λ
2 :
3 : // Give A q tokens from call-graph traversals.

4 : for i ∈ {1, . . . , q } do
5 : p1. . .m+1 ← Aoracle-request()
6 : // Is the request for a real path through the call-graph?

7 : if ∃j : pj → pj+1 < edges(C) then
8 : return 0
9 : endif

10 : authm ← TK(pm , TK(pm−1, · · ·) ∥ pm−1) ∥ pm
11 : Aoracle-response(authm)
12 : endfor

13 :
14 : ptrjumper, ptrcorrect, authcorrect, tcorrect,

15 : ptradv, authadv, tadv ← AACS-Violation()
16 :
17 : // The substituted masked authenticated return address must be different.

18 : if ptrcorrect = ptradv ∧ authcorrect = authadv then

19 : return 0
20 : endif

21 :
22 : // Does the return pointer authenticate correctly with the adversary’s

23 : // new masked authenticated return address as the modifier?

24 : if HK(ptrjumper, authcorrect ∥ ptrcorrect)
25 : , HK(ptrjumper, authadv ∥ ptradv) then
26 : return 0
27 : endif

28 :
29 : // Did the adversary provide a valid masked authenticated return address?

30 : if authadv = HK(ptradv, tadv)
31 : return 1
32 : else

33 : return 0
34 : endif

Figure 13: Security game for ACS with respect to a pro-
gram having call-graphC and authentication token function
TK(·, ·).

18

PACStack: an Authenticated Call Stack

C GLOSSARY
Return address An address that is used as the target of a return instruction

Authenticated pointer A pointer containing some embedded data that can be used to validate its authenticity
Authenticated return address An authenticated pointer whose ‘pointer’ part is a return address.

PAC The value HK(·, ·) produced by ARM-PA.
Mask The pseudo-random value HK(0,areti−1)

Authentication token HK(reti , HK(reti−1, · · ·) ∥ reti−1) in ACS;HK(reti , SP) in [47]
Masked authentication token The authentication token exclusive-OR-ed with the mask

19

Liljestrand, et al.

D ARMv8.3-A PA INSTRUCTIONS

Instruction Mnemonic
PA Key

Addr. Mod. Backwards-
compatibleInstr. Data Gen-

A B A B eric
BASIC POINTER AUTHENTICATION INSTRUCTIONS

Add PAC to instr. addr.

paciasp ✓ LR SP ✓

pacia ✓ Xd Xm ✗

paciaz ✓ LR zero ✓

paciza ✓ Xd zero ✗

pacia1716 ✓ X17 X16 ✓

pacibsp ✓ LR SP ✓

pacib ✓ Xd Xm ✗

pacibz ✓ LR zero ✓

pacizb ✓ Xd zero ✗

pacib1716 ✓ X17 X16 ✓

Add PAC to data addr.

pacda ✓ Xd Xm, ✗

pacdza ✓ Xd zero ✗

pacdb ✓ Xd Xm ✗

pacdzb ✓ Xd zero ✗

Calculate generic MAC pacga ✓ ✗

Authenticate instr. addr.

autiasp ✓ LR SP ✓

autia ✓ Xd Xm ✗

autiaz ✓ LR zero ✓

autiza ✓ Xd zero ✗

autia1716 ✓ X17 X16 ✓

autibsp ✓ LR SP ✓

autib ✓ Xd Xm ✗

autibz ✓ LR zero ✓

autizb ✓ Xd zero ✗

autib1716 ✓ X17 X16 ✓

Authenticate data addr.

autda ✓ Xd Xm ✗

autdza ✓ Xd zero ✗

autdb ✓ Xd Xm ✗

autdzb ✓ Xd zero ✗

Strip PAC
xpacd Xd ✗

xpaci Xd ✗

xpaclri LR ✓

COMBINED POINTER AUTHENTICATION INSTRUCTIONS

Authenticate instr. addr.
and return

retaa ✓ LR SP ✗

retab ✓ LR SP ✗

Authenticate instr. addr.
and branch

braa ✓ Xd Xm ✗

braaz ✓ Xd zero ✗

brab ✓ Xd Xm ✗

brabz ✓ Xd zero ✗

Authenticate instr. addr.
and branch with link

blraa ✓ Xd Xm ✗

blraaz ✓ Xd zero ✗

blrab ✓ Xd Xm ✗

blrabz ✓ Xd zero ✗

Authenticate instr. addr.
and exception return

eretaa ✓ ELR SP ✗

eretab ✓ ELR SP ✗

Authenticate data. addr. and
load register

ldraa ✓ Xd zero ✗

ldrab ✓ Xd zero ✗

Table 3: List of PA instructions [35]. PA Key indicates the PA key the instruction uses. Addr. indicates the source of the address
to be signed or authenticated. Mod. indicates the modifier used by the instruction. Xd and Xm indicates that the input is taken
from a general purpose register. The backwards-compatible column indicates if the instruction is safe on pre ARMv8.3-A.

20

	Preface
	Contents
	List of Publications
	Author's Contribution
	Other Publications
	List of Figures
	List of Abbreviations
	1. Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline and contributions

	2. Background
	2.1 Compilers
	2.2 Memory errors, attacks, and defenses
	2.2.1 From stack smashing to ROP
	2.2.2 Control-flow integrity

	2.3 Memory safety
	2.3.1 Spatial and temporal memory safety
	2.3.2 Temporal memory safety
	2.3.3 Memory safety in C / C++

	2.4 Hardware-assisted memory safety

	3. Linux kernel memory safety
	3.1 Background: Intel MPX and reference counters
	3.1.1 Reference counters
	3.1.2 Intel MPX

	3.2 Results: refcount_t and MPX in the Linux kernel
	3.2.1 Preventing reference counter overflows in Linux
	3.2.2 Using Intel MPX in the Linux kernel
	3.2.3 Discussion: tricky bugs and environments

	4. Intel SGX side-channels
	4.1 Background: side-channels and SGX
	4.2 Results: preventing SGX branch shadowing
	4.3 Discussion: side-channel challenges

	5. ARM Pointer authentication
	5.1 Background: ARMv8.3-A pointer authentication
	5.2 Results: pointer authentication and stack safety
	5.3 Discussion: beyond pointer authentication

	6. Discussion and Conclusion
	6.1 Preventing memory errors in unsafe languages
	6.2 Memory safe languages
	6.3 Understanding memory errors and exploitability
	6.4 Conclusion

	Errata
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V

